A Web of Trails

Richard Wheeldon
richard@dcs.bbk.ac.uk

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
School of Computer Science and Information Systems
Birkbeck College, University of London

Contents

I The Navigation Problem and Related Issues

1 Introduction

1.1 Abstract e e
1.2 Motivation L L e e e e e e
1.3 Outlineof the Thesis e
1.4 Acknowledgements

Problems and Solutions

2.1 Inmtroduction. L e e
2.2 A Brief History of Hypertext
2.3 The World Wide Web o o
2.3.1 Structureof the Web oL
24 Resource Discovery
2.5 Information Retrieval Techniques
2.5.1 Document Representation, .
2.5.2 Scoring Metricso e
2.5.3 Evaluation Metricso o e
2.5.4 The Text REtrieval Conference
2.6 Web Page Metrics e
2.6.1 HTML Tag Weighting,
2.6.2 Landmark Nodes
2.6.3 Hubs and Authorities,
2.6.4 PageRank
2.6.5 Combining Metrics L oo
2.7 Non-Linear Search

14

15
16
18
19
20

CONTENTS 9

II

2.7.1 Question Answering oo 47
2.7.2 Category-based Clustering 47
2.7.3 Link-based Clustering 49

2.8 The Navigation Problem 0oL, 50
2.9 Navigation Aids. L e 51
2.9.1 Link Suggestion. e 51
2.9.2 Site Maps e e e 51
2.9.3 Treesand Graphs. 57

2.10 Trail Recording 62
211 Trail Finding L e 64
2,12 SUmMmaryo oi e e e e e e e e 67
Implementation of a Trail-Based Navigation Engine 68
The Best Trail Algorithm 69
3.1 Imtroduction. e 70
3.2 Graph Traversal and Path Finding 73
3.3 The Best Trail Algorithm 75
3.4 Auxillary Functions L 78
3.5 Scoring Trails L e 80
3.6 Sorting and Filtering L 83
3.7 Implementationo 86
3.8 Complexity e 89
3.9 Performance Evaluation 90
3.10 Concluding Remarks and Future Work 96
Navigability and Starting Point Selection 97
4.1 Introduction. L e 98
4.2 Potential Gain and Related Metrics. oL 100
4.2.1 Potential Gain and Gain Rank 100
4.2.2 Discounting Functions o o000, 101

4.3 Computing Potential Gaino oo 102
4.4 Experiments. e e e e e 104

CONTENTS 3

4.4.1 CONnVETZENCE . « v v v v v e e e e e e e e e e e e 104

4.4.2 Power Law Distributions. 104

4.5 Correlations between Ranking Metrics 106
4.5.1 Experimental Methods 0o 0oL 106
4.5.2 DIiScussion i e e e e e e e e e 107

4.6 Improving Starting Point Selection o 0oL, 108
4.7 Concluding Remarks and Future Work 112
4.7.1 Query Specific Potential Gain00, 112
4.7.2 Multi-Metric Combinations 0oL 112
4.7.3 Site-based Potential Gain o oo, 112

5 Architecture of a Navigation Engine 114
5.1 Imntroduction. L e 115
5.2 Top level Overview o e 116
5.3 Webcases e 118
5.4 An Extensible Component Architecture 120
5.4.1 TrailAlgorithm subclasses 121

5.4.2 Post-Processing and Index Creation 124

5.5 Advanced Features 131
5.6 Improving File-Type Recognition 133
5.7 Web Page Summaries 135
5.7.1 A Summarization Algorithmo .. 136
5.7.2 Examples L 137
5.7.3 Implementation Lo Lo 138
5.7.4 Performance Analysis 139
5.7.5 Titles and Short Titles 143

5.8 Concluding Remarks and Future Work 145
5.8.1 Summaries Lo e e e e 145

5.8.2 Multi-page Search Lo 145
5.8.3 Partial Collection Ranking, 145

5.8.4 Incremental Crawling and Merging Webcases 146

CONTENTS

IIT Applications for Trail-Discovery

6 Navigating the Web

6.1
6.2

6.3

6.4
6.5
6.6

6.7

6.8

Introduction L e
Navigation Interfaces L o
6.2.1 NavSearch e
6.2.2 TrailSearch e
6.2.3 VisualSearch oo
Web Site Examples Lo
6.3.1 SleepyCat o e
6.3.2 University College London
6.3.3 Birkbeck.o
Case Study — SCSIS
Mat-Hassan and Levene’s User Study
Comparative Testing e
6.6.1 Evaluation Philosophy o000,
6.6.2 Analysisof Queries L L
6.6.3 Conclusionso e
Scaling tothe Web Lo
6.7.1 Splittingthe Index L
6.7.2 Graph Partitioning oo
6.7.3 Merging Results oL o
Concluding Remarks and Future Work 0. ..

7 Search and Navigation in Database Systems

7.1
7.2

7.3
7.4
7.5

Introduction oL L e
Indexing Relational Databases
7.2.1 Translating a Relation to a Full-Text Index
7.2.2 Generating the Link Graph,
7.2.3 Computing Joins with Trails
Extending the Navigation System
Semi-Structured Data and XML,

Query Expressiveness e e e e e e

147

148
149
150
150
153
154
155
155
158
159
161
172
173
173
174
202
204
204
205
206
209

CONTENTS 5

7.6 Examples L e e 221
7.7 Evaluation. L 224
7.8 Hierarchies, Taxonomies and Ontologies 226
7.8.1 Generating the Link Graph, 227
7.8.2 Graph Construction Algorithms., 228

7.9 Related Work o L 232
7.10 Future Work and Concluding Remarks 234
7.10.1 Querieso e e 234
7.10.2 Presentation e 234
7.10.3 Security o e 235
7.10.4 ClosingtheLoop 235
7.10.5 Concluding Remarks 0L 236

8 Trails and Program Comprehension 238
8.1 Imtroduction. 239
8.2 OOP, Java and Object Coupling 240
8.2.1 Object Oriented Programming 240
8.22 Java e e e e e 240
8.2.3 Coupling e 240
8.2.4 Refactoring Lo 241
8.2.5 The Jakarta Project Lo 0. 242
8.2.6 Java Documentation Systems oo, 242

8.3 AutoDoc. 244
8.4 AutoCode e 246
8.4.1 Architecture L. 246
8.4.2 Source Code Display L 248
843 Examples e 248

8.5 Power Law Distributions in Class Relationships 252
8.5.1 Related Studies Lo 252
85.2 Results e 253

8.6 Potential Gain as a Refactoring Metric 259
8.7 Concluding Remarks and Future Work 262

87.1 OO0 Coupling o i i e 262

CONTENTS

9 Future Work and Concluding Remarks
9.1 Summary of the Thesis. L oo
9.2 Personalization
9.3 Meta-Search e
9.4 The Software Navigation Problem
9.5 Navigation in Virtual Environments
9.6 Graph Characteristics e
9.7 Final Remarks

A List of Abbreviations

B List of Mathematical Symbols

C Linear Correlation between Ranking Metrics

D Non-Linear Correlation between Ranking Metrics

264
265
267
268
270
272
273
274

275

279

280

289

List of Figures

2.1
2.2
2.3
24
2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
217
2.18
2.19
2.20
2.21
2.22
2.23

Artist’s impression of Bush’s memex.
The Xanadu Transcopyright model.
An expanded version of Conklin’s list of hypertext systems.
The Bow-Tie model of the Web. 000 .

Power Law Relationships in the Web with exponents. Percentages denote con-
fidence levels for intervals. The PageRank citation index is discussed in sec-
tion 2.6. . . . L L e e e e e e e e

Architecture of a typical search engine.
Bag of Words and Bag of N-grams
Korfhage’s matrix for evaluation metrics 0. ..
Software evaluation metrics o Lo oo
TREC WebTrack Collections
HTML tag weighting schemes proposed by (a) Cutler et al and (b) Kim et al.
Vivisimo’s clustered search results.,
Lycos’s sitemap. e e e e e
ExPASy’s sitemap.
Apple’s sitemap. L
An Unidentified Flying Sitemap!
Sitemap showing information from various weather observation areas.

Sitemap from the Journals of the AMA
The Cha-Cha interface. o,
The StarTree interface. o Lo
The VisIT interface. e
The Nattoview interface.

The Kartoo interface. e e

LIST OF FIGURES

2.24

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4

4.5

4.6
4.7
4.8

Zin and Levene’s generic Web View algorithm.

An example Web topology. L.
The Best Trail algorithm.
An example navigation tree. oL L L Lo Lo
Table showing trail scores using Weighted Sum and Sum Distinct.
Results for the query “dotty” on the topology shown in figure 3.1.
Improvements of Average Trail Scores induced by Filtering

Correlation between the increase in trail scores given by the Weighted Sum
and the increase shown using Sum Unique.

Tree of Tips for the navigation tree shown in figure 3.3. The table representing
this tree is shown in figure 3.9. oo o oo,

Table showing candidate tips for expansion.
Properties of the test corpora. o oL o oL,
Increasing Iezpiore INCreases sCore.o
Increasing Iconperge INCTEASES SCOTE. . . .+« o o v v v it v i it e e
Increasing Iezpiore : Iconverge increases score with sum distinct.
Increasing Iezpiore : Iconverge decreases score with weighted sum.

Increasing the starting point count increases the average trail score.

An algorithm for computing Potential Gain
A matrix-based algorithm for computing Potential Gain
Potential Gain values converge rapidly in a few iterations.

Log-Log plots showing power law distributions in the values of Potential Gain
for the web sites of (a) the DTI, (b) Birkbeck and (c) UCL and also for the
pages of the TREC WT10g corpus.

Log-Log plots showing (a) that there is no power law in the distribution of
Potential Gain values on the Sleepycat web site (b) that there is such a distri-
bution in the values of potential gain for pages within the JDK 1.4 Javadocs.

Metrics used in tests of Potential Gain as a starting point selection metric.
Corpora used in tests of Potential Gain as a starting point selection metric.

Queries used in tests of Potential Gain as a starting point selection metric.

85

87
88
90
91
92
93
94
95

102
103
104

105

106
108
108
109

LIST OF FIGURES 9

4.9

4.10

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16

5.17

5.18

5.19
5.20

5.21

6.1

Percentage increases in trail score achieved by sorting by the given metrics in
preference to Found(p) after previous sorted by the number of keywords then
by the relevance u(p). The two averages show the mean values taken over all

corpora or webcases and over all queries.o o0 110
Shows the increase in trail scores achieved by using various measures for start-

ing point selection. 111
The navigation engine architecture. o000, 116
Behind the facade. Structure of classes in the core package 120

Two subclasses inherit from TrailAlgorithm, which relies heavily on Ac-

tiveWebcase. L e e e e 121
Behind the facade. Interaction of core classes. 123
Algorithm for reading features and writing temporary files. 125
Algorithm to merge and aggregate files of keyword, urlid, score tuples. . . . 125
Algorithm to build inverted file in B-tree. 126
Algorithm to run post-processing operations to generate webcase data. . . . 126
Structure of the post-process classes. 128
Dependencies between post-process operations. 129
Advanced query syntax for search engines. 132
Algorithm for filtering documents. 133
Unix commands for extracting lists of files from archives. 134
Algorithm to Summarize Web Documents 136
Time taken to load and generate an average summary, given a certain number

of threads. e 139
Time taken to load and generate an average summary, given a certain number

of threads, where the number of threads is greater than one. 140
Time taken to load and generate an average summary, given a certain number

of open file handles. 140
Time taken to load and generate an average summary, given a certain number

of documents cached.o L e 141
The time taken to load a document correlates strongly with its length. . . . 142
The time taken to generate a summary for a document does not correlate

strongly with its length. o o oo 143
Distribution in the times taken to load individual documents. 144

Results for the query “computers” on UCL’s Web site. 151

LIST OF FIGURES

6.2 Results for the query “pitkow” on Xerox PARC’s Web site.

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33

Results for the query “oxygen” on the Creoscitex Web site.

Results for the query “Dbt” on the Sleepycat Web site.

Trails found for the query

“Dbt” on the Sleepycat Web site.

Results for the query “Cryptography” on UCL’s Web site.

Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query

“hotel management” on the BBK site.
“accomodation” on the SCSIS site.
“accommodation” on the SCSIS site.
“andrew” on the SCSISsite.
“application form” on the SCSIS site.
“birkbol programmes” on the SCSIS site.
“c++ notes” on the SCSIS site.
“exam papers” on the SCSIS site.
“mark” on the SCSIS site.
“neural network” on the SCSIS site.

“xml” on the SCSIS site.

Queries used as the basis for authoring trails.,

Statistics concerning the trails authored for the queries shown in figure 6.18.

Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query
Trails found for the query

“access course” on the Birkbeck site.
“birbbeck logo design” on the Birkbeck site.
“design postgraduate” on the Birkbeck site.

“exam papers” on the Birkbeck site.
“international students” on the Birkbeck site.
“writing up phd” on the Birkbeck site.
“a student gym” on the Birkbeck site.
“beginners painting” on the Birkbeck site.

“bsc programming” on the Birkbeck site.
“dept of philosphy” on the Birkbeck site.
“dept of philosophy” on the Birkbeck site.
“distance learning” on the Birkbeck site.
“mba” on the Birkbeck site.

“access 97" on the Birkbeck site.

LIST OF FIGURES

6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41

6.42

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8
7.9
7.10
7.11
7.12

7.13
7.14
7.15
7.16

8.1
8.2
8.3
8.4

Trails found for the query “project management” on the Birkbeck site.

Trails found for the query “part time” on the Birkbeck site.
Trails found for the query “research grants history” on the Birkbeck site.
Trails found for the query “social” on the Birkbeck site.
Trails found for the query “ba history” on the Birkbeck site.
Distribution of Trail Lengths.
Example graph for partitioning. o 0000000,

Example of the effect of various partitioning schemes on the graph shown in
figure 6.40. L. e e e e e e

Algorithm to merge sets of trails from multiple sources.

Interaction between Microsoft CMS and SPS.
Architecture of DbSurfer.o
Example XML entry extracted from the DBLP Schema.
UML diagram showing the DBLP Schema..
Example results using DbSurfer for the query “sergey anatomy”.
Example results using DbSurfer for the query “vannevar bush”.

Comparison of reciprocal rank and total time taken for 20 citation-seeking
queries on DbSurfer, BANKS and CiteSeer.

Example of a taxonomyo o
Example of documents mapped to the taxonomy shown in Figure 7.8

Conditions under which links are added to the Vertical Trailer graph.

Algorithm to create a directed graph from a document classification hierarchy.

Directed Acyclic Graph (DAG) formed from the union of the taxonomy and
classification map. L e

Algorithm to add inter-document links to a classification hierarchy graph. . .
Algorithm to add parent-child links to a classification hierarchy graph.
Graph used for trail discovery.

Revised architecture of DbSurfer.

AutoDoc results for the query “Sql”.
Architecture of AutoCode.
Ilustration of coupling types and their graph representations.

Results for the query “zip” on the JDK 1.4 source code.

11

196
197
198
199
201
203
206

206
208

213
218
219
221
222
223

225
226
227
227
228

229
229
230
231
237

245
246
247
249

LIST OF FIGURES

8.5
8.6
8.7

8.8

8.9
8.10

8.11

8.12
8.13
8.14
8.15

8.16

9.1
9.2

C.1

C.2

C.3

C.4

C.5

C.6

Trails returned for the query “zip” on the JDK 1.4 source code.
Trails returned for the query “writer” on the JDK 1.4 source code.

Log-log plots showing power law distributions in the number of (a) fields, (b)
methods and (c) constructors of classes in the JDK class libraries.

Log-log plots showing the relationships between (a) the number of fields and
the number of constructors, (b) the number of methods and the number of
constructors and (c) the number of methods and the number of fields for classes
in the JDK. . . . o . o e

Correlation matrix for class members in the JDK

Log-Log plots showing power law distributions in (a) the number of subclasses
of each class and (b) the number of interfaces implemented by classes, both
based on data from the JDK class library.

Log-Log plots showing power law distributions in (a) the number of classes
referenced as field variables and (b) in the number of classes which contain
references to classes as field variables.00,

95% confidence intervals for power law exponents in JDK.
95% confidence intervals for power law exponents in Tomcat.
95% confidence intervals for power law exponents in Ant.

The fifteen classes with the highest reverse aggregation Potential Gain values:
JDK . e

The fifteen classes with the highest inheritance Potential Gain values: JDK .

Contributions of the thesis. e

Mock-up of how the trail finding interface could be applied to the graph of
potential user interactions at the operating system level.

Correlation between Web metrics on the Sleepycat webcase using Pearson’s
product moment correlation coefficient

Correlation between Web metrics on the SCSIS webcase using Pearson’s prod-
uct moment correlation coefficient oL 0oL,

Correlation between Web metrics on the UCL webcase using Pearson’s product
moment correlation coefficiento o o o000

Correlation between Web metrics on the UCL-CS webcase using Pearson’s
product moment correlation coefficient

Correlation between Web metrics on the Intel webcase using Pearson’s product
moment correlation coefficient,

Correlation between Web metrics on the Birkbeck webcase using Pearson’s
product moment correlation coefficient

255
255

256

257
258
258
258

260
260

265

271

281

282

283

284

285

LIST OF FIGURES

C.7

C.8

D.1

D.2

D.3

D.4
D.5

D.6

D.7
D.8

D.9

Correlation between Web metrics on the DTT webcase using Pearson’s product
moment correlation coefficiento o o L0000,

Correlation between Web metrics on the JDK 1.4 webcase using Pearson’s
product moment correlation coefficient

Correlation between Web metrics on the Sleepycat webcase using Kendall’s
Tau Statistics e

Correlation between Web metrics on the Sleepycat webcase using Spearman’s
Rho . . o . o

Correlation between Web metrics on the SCSIS webcase using Kendall’s Tau
Statistics L e e e e e

13

287

288

290

290

291

Correlation between Web metrics on the SCSIS webcase using Spearman’s Rho 291

Correlation between Web metrics on the JDK 1.4 webcase using Kendall’s Tau
Statistics L. e e

Correlation between Web metrics on the JDK 1.4 webcase using Spearman’s
Rho e e e

Correlation between Web metrics on the UCL webcase using Spearman’s Rho

Correlation between Web metrics on the UCL-CS webcase using Spearman’s
Rho o e

Correlation between Web metrics on the Intel webcase using Spearman’s Rho

D.10 Correlation between Web metrics on the Birkbeck webcase using Spearman’s

Rho . . . e e

D.11 Correlation between Web metrics on the DTI webcase using Spearman’s Rho

292
293

293
294

295

Part 1

The Navigation Problem and
Related Issues

14

Chapter 1

Introduction

A beginning is the time for taking the most delicate care that the balances are
correct.

Herbert 1965

I will tell you the beginning, and, if it please your ladyships, you may see the end;
for the best is yet to do; and here, where you are, they are coming to perform it.

Shakespeare 1599

15

CHAPTER 1. INTRODUCTION 16

1.1 Abstract

Pages returned by Web search engines are often used as starting points for further navigation.
The hyperlinks which users follow from the start page form a trail. Despite this, navigation
possibilities are not considered by conventional search engines. Nor do search engines provide
any support in suggesting trails for users to follow.

Users experience the “Navigation Problem”, where they are said to be “Lost in Hyperspace”,
whenever they are navigating the Web (or some other hypertext) and are either unsure of
where they are relative to another page, unsure of which link to follow in order to find what
they’re looking for, unsure of where they’ve been or unsure of where they will get to when
they follow any given link.

This thesis describes a potential solution to the navigation problem — a “navigation engine”,
developed to provide memex-like information trails in response to a user’s query. This unifies
ideas from the information retrieval and hypertext communities. The main body of the
thesis is presented in two parts, covering two major contributions — the implementation of
this system and its application to the fields of web navigation, database search and program
comprehension.

An existing algorithm, the Best Trail, has been refined and enhanced. The described im-
plementation — the first effective, publically-accessible implementation of this approach to
trail-finding — has been made possible by changes to the selection functions, the addition of
new methods for removing redundant information and the introduction of a new link-based
metric.

The Potential Gain metric improves the selection of starting points from which the Best Trail
algorithm will find the trails by evaluating the potential of a page to provide future navigation
opportunities. It is defined, for a given page, in terms of the fraction of trails of various lengths
which start from that page. Algorithms for computing Potential Gain are shown along with
techniques for using it to improve node selection. Experiments have been performed which
show the effectiveness of the metric in increasing the likelihood of finding high scoring trails.

A comprehensive description of the architecture of the navigation system covers not only
the basic components and the algorithm for index creation but also methods for handling
extended query syntax, indexing content from non-standard file types and summarizing Web
documents. It is shown how this system provides useful trails and enhances user navigation
experiences on Web sites. The use of trails alleviates the navigation problem in two ways.
Firstly, by semi-automating the navigation process, the user is able to follow a pre-determined
path which can be assumed to be revelant. Secondly, by providing contextual information,
the trails allow users to make more informed navigation decisions and hence avoid getting
“lost”.

Building on this work, a tool called DbSurfer has been developed which provides an interface
to relational databases. Data is extracted in the form of an inverted index and a graph of
foreign key dependencies. Together, these can be used to construct trails of information,
solving the join discovery problem and allowing free text search on the contents. The free
text search and database navigation facilities can be used directly, or can be used as the
foundation for a customised interface.

CHAPTER 1. INTRODUCTION 17

The navigation problem also exists in automatically-generated program documentation and in
the source code from which such documentation is typically generated. The final contribution
in this thesis is a pair of tools, AutoDoc and AutoCode, for indexing Javadocs and Java source
code, respectively. AutoCode shows trails according to graphs of coupling relationships —
graphs which are shown to be Web-like in their scale-free topology.

The development of the navigation engine called for solutions to several interesting problems
and leaves a potential solution for many more. This represents an important step on the path
to Bush’s Web of Trails.

CHAPTER 1. INTRODUCTION 18

1.2 Motivation

In Vannevar Bush’s seminal paper “As We May Think” (Bush 1945) he suggested a future
machine called a memez, which would help the user build a “web of trails”. In doing so,
he introduced the world to the concept of linked documents, which would later be known as
hypertext, and of the trail — a sequence of linked pages. The work was continued by Nelson,
Engelbart and Tim Berners-Lee who introduced the World Wide Web (Berners-Lee 1999) —
the largest and the most successful hypertext system ever developed. The ubiquitous Web
has dominated hypertext research in recent years and is likely to continue to do so, but two
key usability problems remain unsolved.

The first major problem to be addressed is the resource discovery problem, that of finding a
given document on the web, finding a resource which answers a given question, or which pro-
vides information about a given subject. Solutions to this problem have included directories
such as Yahoo! or the Open Directory Project (ODP) and automated web search engines
such as AltaVista and Google.

The second major problem on the web is the navigation problem of avoiding situations where
people get “lost in hyperspace?” (Levene and Loizou 1999). A person is said to be “lost
in hyperspace” if they are navigating (or browsing) the web (or some other hypertext) and
are either unsure of where they are relative to another page, unsure of which link to follow
in order to find what they’re looking for, unsure of where they’ve been or unsure of where
they will get to when they follow a given link. Search engines help to solve the problem by
providing a means for people to find what they’re looking for, but neither provide support
for users once they have their initial results nor show those results in the context of the pages
around them. Search engines also contribute to the problem by directing users to the middle
points of a web site with no reference to important points, such as home pages, etc.

The main contribution of this thesis is to describe a potential solution to the navigation
problem. In order to tackle the navigation problem, a navigation engine has been developed
which builds information trails in response to a user’s query. This unifies ideas from the
information retrieval and hypertext communities. It is shown how this system enhances user
navigation experiences on web sites and how the system has wider applicability in the fields
of databases and program comprehension.

CHAPTER 1. INTRODUCTION 19

1.3 Outline of the Thesis

This thesis describes the implementation of the system and its application in relation to web
navigation, databases and program comprehension. It is organized as follows:

Chapter 2 describes the resource discovery and navigation problems, the relationship be-
tween them and proposed solutions. This includes related work in information retrieval
systems, search engines, link analysis and Web navigation aids.

Chapter 3 describes the Best Trail Algorithm and its implementation. This is the key
algorithm used to compute the trails. The algorithm was originally described in Levene
and Zin 2001 but this chapter describes its first effective implementation. This chapter
expands on work presented in Wheeldon and Levene 2003.

Chapter 4 describes a new metric called Potential Gain which evaluates the potential of a
page to provide future navigation opportunities. The potential gain of a node is formally
defined for as the sum for all [> 0 of the product of the fraction of trails of length [
which start at that node and a discounting factor. This chapter provides an analysis of
the metrics utility and also covers work introduced in Wheeldon and Levene 2003.

Chapter 5 describes the architecture of the navigation system. A basic description of the
architecture was presented in Levene and Wheeldon 2001, and this extends it to show
not only the basic components and the algorithm for index creation, but also methods
for handling extended query syntax, indexing content from non-standard file types and
summarizing web documents.

Chapter 6 discusses the application of this work to solve the navigation problem in the
World Wide Web. The user interfaces presented here have been previously covered in
Levene and Wheeldon 2001 and Wheeldon, Levene, and Zin 2002. An overview of the
work is provided in Levene and Wheeldon 2003.

Chapter 7 expands on work described in Wheeldon, Levene, and Keenoy 2003 to show how
the trail finding approach can be used to provide effective free-text search with naviga-
tion facilities in relational databases. This is extended with new work concerning data
stored in document, information and content management systems with hierarchical
document classification schemes.

Chapter 8 expands on work presented in Wheeldon, Levene, and Zin 2002 to show how the
system can be used to index program documentation. It is also possible to index program
source code and show trails which aid its comprehension as described in Wheeldon,
Counsell, and Keenoy 2003. This is improved by computing trails on multiple graphs
and combining the results. Analysis on these graphs reveals a scale-free topology as
described in Wheeldon and Counsell 2003b. Use of the Potential Gain metric on these
graphs yields interesting results concerning refactoring as described in Wheeldon and
Counsell 2003a.

Chapter 9 concludes the thesis with ideas for future research.

CHAPTER 1. INTRODUCTION 20
1.4 Acknowledgements

The navigation engine described in chapter 5 was constructed over a period of about 3 years,
and served as the basis for NavigationZone’s trail-finding technology. The design and con-
struction of the system would not have been possible without the help of those involved with
NavigationZone, in particular Nadav Zin and Sean Greenan for their ideas concerning algo-
rithms, hierarchies and java documentation, James Skene for the design and implementation
of the second web robot and Jon Bitmead for the implementation of the user interface.

The author would like to thank Mazlita Mat-Hassan for the user study described in chapter
6. Her work has helped greatly in validating the approach taken in this thesis. The work of
Nadav Zin and Mark Levene in the initial development of the Best Trail Algorithm is also
greatly appreciated.

Some of the illustrations and figures in this thesis have been copied from other sources. In
particular, the illustration of Memex (figure 2.1 is accredited to Ian Adelman and Paul Kahn of
Dynamic diagrams and is taken from the Association of Computing Machinery (ACM) reprint
of Bush 1945; the transcopyright diagram (figure 2.2) is taken from the xanadu.com web site;
the illustration of Nattoview (figure 2.22) is taken from Shiozawa, Nishiyama, and Matsushita
2001; and the picture showing Microsoft Content Management server and SharePoint Server
(figure 7.1) is taken from Microsoft’s web site.

Similarly the navigation system has relied on the development work of others. In particular,
thanks go to Jason Shattu, for the development of Java2HTML; Stephen North and all those
involved in the GraphViz project and all members of the Jakarta project and Sun’s Java
development team.

Finally, thanks go to all those who have helped in the ideas, concepts in this thesis and the
endless proof-reading. In particular Steve Counsell, Bryn Reeves, John Wheeldon, Connie
Bottel, Kevin Keenoy and most of all my supervisor, Mark Levene, without whom none of
this would have been possible.

Chapter 2

Problems and Solutions

In Xanadu did Kubla Khan,

A stately pleasure-dome decree :
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

So twice five miles of fertile ground

With walls and towers were girdled round:

And there were gardens bright with sinuous rills,
Where blossomed many an incense-bearing tree;
And here were forests ancient as the hills,
Enfolding sunny spots of greenery.

Coleridge 1816

21

CHAPTER 2. PROBLEMS AND SOLUTIONS 22
2.1 Introduction

This chapter introduces and describes the navigation problem in hypertext. The relationship
between the navigation and resource discovery problems is explored. Measures are described
for solving each of these problems.

The rest of this chapter is organized as follows:

Section 2.2 presents a brief history of the early developments in hypertext, starting with
Bush’s memex, through Engelbart’s oN-Line System (NLS) and Nelson’s Xanadu to the
hypertext boom in the late 80s and early 90s.

Section 2.3 describes the World Wide Web — briefly discussing its creation before focussing
on the properties and structure of the Web.

Section 2.4 describes the resource discovery problem and the proposed solutions including
search engines and meta-search engines.

Section 2.5 describes classic information retrieval techniques for identifying sets of relevant
documents. The techniques used mainly involve keyword based metrics.

Section 2.6 shows how these techniques have been extended using metrics designed specifi-
cally for the Web.

Section 2.7 describes search techniques which go beyond returning ordered sets of docu-
ments, and return direct answers or complex structures.

Section 2.8 describes the navigation problem and the differences and similarities between
the resource discovery and navigation problems.

Section 2.9 describes navigation aids designed to tackle this problem, including link sugges-
tion tools and site maps.

Section 2.10 explores systems for manually defining trails or guided tours through Web sites
as a method of solving the navigation problem. Such systems were commonly used in
early hypertext systems and were often found to be highly effective.

Section 2.11 describes how the process of automating the construction or discovery of these
trails has progressed to date.

Section 2.12 summarizes the main points of the chapter and sets to scene for the rest of the
thesis.

CHAPTER 2. PROBLEMS AND SOLUTIONS 23

2.2 A Brief History of Hypertext

The history of hypertext begins with Vannevar Bush’s seminal 1945 paper “As We May
Think” (Bush 1945) in which he suggested a future machine called a memex, which would
help the user build a “web of trails”. Bush had been Franklin D. Roosevelt’s scientific advisor
during the war, working on the Manhattan Project and leading-edge computing technology
in the work to crack the Japanese cipher code-named Ultra (Zachary 1999; Burke 1994). This
placed him in a unique position to offer a vision for the future. He had previously designed a
machine called the Rapid Selector which would store documents and retrieve them at will, and
he extended this in his design for the memex. The machine would be a cabinet-like box into
which the user could store documents and images using a rapid-action camera (figure 2.1).
A sequence of such documents could then be annotated, and linked together to form a trail.
A large web of trails could be constructed via a memex. Levers would allow the user to
quickly move backwards and forwards through these trails and recall them when needed. It is
noteworthy that in this case, it is the reader who creates the links, whereas modern hypertext
systems tend to leave this responsibility to the document’s authors. Although no memex was
ever built, the importance of the vision lived on. Bush’s contribution to science has been
analysed by many people (Nyce and Kahn 1991) and even the name “memex” lives on in
modern hypertext research (Chakrabarti, Srivastava, Subramanyam, and Tiwari 2000). The
linking of documents was the first suggestion of hypertext, although the name had not yet
been invented.

The term “hypertext” was coined by Ted Nelson, famous for his visions of the Xanadu project
(Nelson 1993). He described hypertext as “a body of written or pictorial material intercon-
nected in such a complex way that it could not conveniently be presented or represented
on paper” (Nelson 1965). In the Xanadu model, content portions are published as separate
entities (with certain permissions) in a content pool. Documents are then constructed as
virtual documents with references to this content. The underlying content never changes,
so links never break, but documents can be re-written by altering the references and adding
new content to the pool. Software developers might see similarities between this and the
flyweight (Gamma, Helm, Johnson, and Vlissides 1995) pattern for shared objects. In the
Xanadu model the shared objects would be the content text. Xanadu offered the possibility
of two-way, unbreaking links which could (like those in the memex) be created by any user
between any document. Transclusive links (Nelson 1999) would allow user’s to connect any
excerpt to its original, implicitly providing deep version management whilst the transcopy-
right model (see figure 2.2) would allow authors control over and royalty payments for these
excerpts. Users could also be offered a side-by-side intercomparison of connected documents.
The front-end would show the differences between versions in a style of presentation similar
to that of a graphical diff tool (Myers 1990).

Unlike memex, which was intended as a vision for the future, Xanadu was a project whose
implementation was attempted more than once, with two versions now available under an
open-source license as Udanax Gold and Udanax Green'. Despite this, many of the goals of
the Xanadu project were never implemented in any hypertext system and it is worth a brief
investigation into the possible reasons for Xanadu’s lack of adoption.

Some authors have been somewhat uncharitable in their criticism of Xanadu’s failings. One

! http://www.udanax.com/

CHAPTER 2. PROBLEMS AND SOLUTIONS

BREFERER

Figure 2.1: Artist’s impression of Bush’s memex.

24

CHAPTER 2. PROBLEMS AND SOLUTIONS 25

Dt L\—r/

xvl
o USER /
L e | s
e) FILE =) B) VERT[‘; Pl CONSUMER
AUTHOR LIST OF B browses, pre-
uses virtual ﬁ::f“";“;::::‘ ity ﬁm;ﬂ sends for contents authorizing
edit program ﬁl;z for free disiribution. them iogether. i N micropayments
to add new Can link t0 and punentingether; for content
content to the S H ML comntent is sold,
pool and _ ” L each user pays only
AVAILABLE CONTENT POOLAV %Y for whaterer PARTS

are sent to fill out the

quote any
other content Available by title rather than by - one be in many plages virtual document,
as desired. .4 -
D “_' Purchased portions
D — may be kept in user's
1

rEID‘.

— i DEEP CACHE
L ‘ T = media management
PROPOSED NEW FORM ® = o 8 1"‘“?";"“"“]“”
; STRIBUTION vomnoe deEie L] A
CONTENT DIS . (nay use htip RANGE col)
-~ PORTIONAL AND PERMITTED. MANY INDEPENDENT PROVIDERS OF CONTENT SEND CONTENT
Rightsholders grant permission in advance for use ingew PORTIONS AS REQUESTED, may charge proporiional micropayment

contexts, provided that content is abtained separately.

2-WAY CONN'E CT CONTENTS by their universal addresses.
A link can be an independent document; anyone may publish comments or other links to anything in the pool.

Figure 2.2: The Xanadu Transcopyright model.

example, the Wired article, “Curse of Xanadu” provoked heavy criticism from Nelson himself
for its claims that “Xanadu couldn’t be done” and its misstatement and misrepresentation
of transclusion and enfiladics (Wolf 1995; Nelson 1995). If Wolf’s suggestions of technical
impossibility and ignorance are too difficult to believe, perhaps a simpler reason can be found
in Eric Drexler’s account of hypertext publishing (Drexler 1987). Drexler defines the essential
characteristics of a hypertext publishing system as being a hypertext system which has support
for bidirectional, fine-grained, filtered linking. However Drexler continues that to state that
“The most important [characteristic] is that the system be public; the difference between using
a small, private system and using a large, public system will be like the difference between
using a typewriter and filing cabinet and using a publisher and a major library”. Xanadu’s
failure to address the needs of users to control the software in their own environments and yet
maintain the power to link to documents on other servers may have been its undoing; as may
the failure to set open standards so that developers could extend and enhance the original
ideas.

Douglas Engelbart was another early believer in Bush'’s ideas. He dreamt of a machine that
would aid human cognition, and felt that Bush’s trails represented a “beautiful example of
a new capability in symbol structuring” (Engelbart 1962). He told the Advanced Research
Projects Agency (ARPA) that it was “quite feasible to develop a unit record system ... with
automatic trail establishment and trail following facility” and set out to prove it. In 1963,
ARPA gave Engelbart the funds to start the Augmentation Research Centre (ARC), at the
Stanford Research Institute (SRI). This was a research laboratory dedicated to finding better
ways to use technology for research and communication and which, at its peak, grew to 47
people.

Engelbart, along with colleagues at the SRI such as William English and John Rulifson, de-

CHAPTER 2. PROBLEMS AND SOLUTIONS 26

veloped the NLS. A revolutionary system for its day, it introduced the concepts of hypertext
linking, tele-conferencing, word processing, e-mail, the mouse and multiple windowing sys-
tems. In the Spring of 1967, it was announced that the thirteen ARPA-sponsored computer
research labs would be networked. The ARC became the second host on the ARPANet.
Engelbart saw the NLS as the ideal tool for this environment. At the 1968 Fall Joint Com-
puter Conference in San Fransisco, Engelbart, operating the computer from the stage via
a home-made modem, used NLS to demonstrate the system and illustrate his ideas to the

audience?.

The hypertext nodes in NLS were organised into files. Reference links would help a user to
move from one file to another and paths could be specified using linked lists of links. The
NLS files were structured into a hierarchy of segments called statements. Each statement
was limited to 3000 characters in length and tagged acording to its level in the hierarchy.
Links referencing these tags could be established between any of these statements regardless
of which file they were in.

Other notable hypertext systems include the Hypertext Editing System (HES), Document
Examiner, Intermedia, Notecards ZOG, and the Knowledge Managment System (KMS):

HES was developed by Andries van Dam at Brown University. It supported branching text
arranged in menus and was designed to run on an IBM /360 mainframe.

Symbolics Document Examiner was developed around 1985 and used for exploring the
set of Symbolics Lisp manuals (Walker 1987).

Intermedia was developed by Norman Meyrowitz at Brown University between 1985 and
1991 (Meyrowitz 1986). It was an educational hypertext system, implemented for Ap-
ple’s version of UNIX. It was a window-based system which supported bi-directional
links between arbitrary strings of text and included a text editor, graphics editor, im-
age viewer and timeline editor.

NoteCards was designed at Xerox’s Palo Alto Research Center (PARC) and was designed to
help authors, researchers and designers work with ideas (Halasz 1988). Each card rep-
resented a node between which typed links could be made. A “browser card” provided
a structural overview diagram of the notecards and links.

ZOG was a system developed at Carnegie Mellon University (CMU) which supported mul-
tiple users working on a large time-sharing system.

KMS was a direct descendant of ZOG and was developed as a commercial product in the
early 1980s (Acksyn, McCracken, and Yoder 1988). Each node in KMS is a frame,
of which only two could appear on screen at one time. Two types of links were sup-
ported: tree and annotation. Tree links referenced material at lower levels in a hierarchy
whilst annotations referenced peripheral material, such as comments. An index could
be formed by listing all levels in the hierarchy. All these links were followed by clicking
with the mouse on a segment of anchor text, an idiom followed by many hypertext
systems.

2 See http://sloan.stanford.edu/mousesite/1968Demo.html for archive video footage of the demonstration.

CHAPTER 2. PROBLEMS AND SOLUTIONS 27

Conklin 1987 discusses the features of many hypertext systems. Table 2.3 extends Conklin’s
list of hypertext systems and provides a comparison between some of the systems. The table
includes the World Wide Web (discussed in the following section) and other hypertext systems
such as HyperPad, LinkWay, Folio Views and Black Magic — developed in the late 1980s and
early 1990s to run on International Business Machines (IBM) compatible Personal Computers
(PCs) (Fairhead 1990). The following features of hypertext systems are listed:

Hierarchy Is there specific support for a hierarchical structure?

Graph-based Does the system support nonhierarchical (cross-reference) links?

Link types Can links have types?

Attributes Can user-designated attribute/value pairs be associated with nodes or links?

Trails Can many links be strung together into a single persistent object? Paths in Intermedia
can be user programmed. AmigaGuide supports a single guided tour controlled by the
behaviour of the “Browse” button. The support for paths, trails and tours will be
discussed in sections 2.10 and 2.11.

Versions Can nodes or links have more than a single version?

Code Can arbitrary executable procedures be attached to events at nodes or links? Client-
side programs can be added to web pages using JavaScript, ActiveX, Flash, Java but
support may be limited to certain browsers or operating systems. Server-side programs
can be written using any language.

String search Can the hyperdocument be searched for strings (including keywords) ? Search
engines such as Google, AltaVista, etc. provide partial search facilities for the Web.
There is no centralized service covering all possible information.

Text editor Which editor is used to create and modify the contents of nodes?
MultiUsers Can several users edit the hyperdocument at the same time?
GFX Is some form of pictorial or graphical information supported in addition to text?

Graphical Browser Is there a browser which graphically presents the nodes and links in
the hyperdocument?

It is impossible to cover all the hypertext systems ever developed but it is possible to give
examples and show the growing influence that hypertext was having on modern systems.
By the early 1990s, no respectable computer system was complete unless it shipped with its
own hypertext documentation. Microsoft had the Windows Help system, Commodore had
AmigaGuide (Junod 1992) and Silicon Graphics had Insight (Muchowski and Smith 1994),
but a revolution was coming ...

System Hierarchy | Graph | Link | Attr. | Trails | Versions | Code Search Text Multi | GFX | Graphical
based | types Editor -user browser
AmigaGuide No Yes No No One No Yes No Any No Yes No
Black Magic No Yes No No No No Yes No Custom No Yes No
Boxer Yes Yes Fixed No No No Yes Yes Emacs No Yes Yes
CREF Yes Yes Yes No No By link No Yes Zmacs No Yes No
Emacs INFO Yes No No No No No Yes No Emacs No No No
Folio Views No Yes Fixed No No No No Full-Text Custom No No No
Guide No Yes Fixed No Yes No Yes Yes Custom No Yes No
HyperCard No Yes No No Yes No Yes Yes Any No Yes No
HyperPad No Yes No No No No Yes Yes Custom No No No
IBIS Yes Yes Yes No No By link No No Basic Yes No No
Insight Yes Yes No No No No No Yes None No Yes No
Itermedia Yes Yes Yes Yes No No No Yes Custom Yes Yes Yes
KMS Multiple Yes Fixed No No Yes Yes Yes WYSIWYG | Yes Yes No
Linkway No Yes Fixed No No No Yes Yes Custom No Yes No
Microsoft Help Yes Yes No No No No Yes Yes None No Yes No
neptune Yes Yes Yes Yes No Yes Yes Yes Smalltalk Yes Yes Yes
NLS/Augment Yes Yes Yes Yes Yes Yes Yes Yes Custom Yes Yes No
Notecards Multiple Yes Yes | Nodes No No Yes Yes Interlisp Yes Yes Yes
Outline Processors Yes No No No No No No Yes Various No No No
PlaneText Unix FS. Yes No No No No No | Unix/grep SunView Yes Yes Yes
Symbolics D.E. Yes Yes No No Yes No No Yes None No No No
SYNVIEW Yes No No No No No No No Unix No No No
textnet Multiple Yes Yes Yes Yes No No Keyword Any No No No
hyperties No Yes No No No No No No Basic No Yes No
WE Yes Yes No fixed No No No No Smalltalk No Yes Yes
World Wide Web No Yes No No No No Yes Partial Any Yes Yes No
Xanadu No Yes Yes Yes Yes Yes No No Any No Yes No
Z0G Yes No No No No No Yes Full Text Spec Pur Yes No No

Figure 2.3: An expanded version of Conklin’s list of hypertext systems.

SNOLLNTOS ANV SWHTd0OY4d ‘¢ H4.LdVHO

8¢

CHAPTER 2. PROBLEMS AND SOLUTIONS 29
2.3 The World Wide Web

Whilst working for Consel Européen pour la Recherche Nucleaire (CERN) in 1980, Tim
Berners-Lee had written a small notebook program, “Enquire Within Upon Everything”
(shortened to Enguire), which allowed links to be made betwen arbitrary nodes. In March
1989 a proposal circulated (Cailliau 1995) for a new hypertext information management sys-
tem to organize the complex sets of information provided by various groups of physicists.
The article was recirculated the following May. Finally, in September 1990, Mike Sendall,
Berners-Lee’s supervisor at the time, gave Berners-Lee a NeXT Cube (Thompson and Baran
1988) and permission to start his work.

Berners-Lee’s proposal was for a hypertext management system in which the information
storage software could be both logically and physically separated from the information dis-
play software, with a well defined interface between them (Berners-Lee 1989). This would
meet CERN’s requirements of remote data access across networks, heterogeneity and oper-
ating system independence, access to existing data and decentralized control so that anyone
could create new content. Specifically not included in the requirements were mechanisms for
handling copyright enforcement and data security as these were “of secondary importance at
CERN, where information exchange is still more important than secrecy”. This removed the
complexity of Nelson’s transcopyright model. The proposal for private annotated links seems
to have been neglected.

A browser-editor called WorldWide Web was developed (later it was renamed to Nezus) which
ran under NeXTStep. It allowed the user to browse hypertext pages specifically designed for
it, as well as Usenet groups, File Transfer Protocol (FTP) sites and the local file system, but
only local files could be edited. Berners-Lee was fortunate to be working in an environment
where the work could be freely published and reported to everyone. Thus, the protocols for
the Web were made public, the designs were made public and the source-code for both the
server and client was made public. This allowed for adoption by the masses and its meteoric
success has been well-publicized (Berners-Lee 1999). The World Wide Web was born!

The foundations for the success of the Web were laid in three of Berners-Lee’s inventions.
Firstly, that of the HyperText Markup Language (HTML), used to provide meaning and
styling to the majority of web pages. Secondly, that of the HyperText Tranfer Proto-
col (HTTP) (Berners-Lee 1996) and thirdly that of the Uniform Resource Locator (URL)
(Berners-Lee 1994). Open standards were published for all of these protocols. The mainte-
nance of these standards is now the responsibility of the World Wide Web Consortium (W3C),
of which Tim Berners-Lee is overall director.

A language not without its flaws (Greenspun 1994), HTML may well be replaced with the
eXtensible Markup Language (XML) (Harold and Means 2001) which has already found
uses in many situations where HTML would be totally unsuitable. XML is a meta-markup
language for text documents which is extensible in the sense that new markup tags can be
defined within a document. Both HTML and XML documents use embedded tags which
can be nested to many levels. The style of both formats is based upon that of the Standard
Generalized Markup Language (SGML).

HTTP is a stateless protocol used to transmit Web pages. It is build on top of the Transfer
Control Protocol/Internet Protocol (TCP/IP) — the fundamental protocols of all internet

CHAPTER 2. PROBLEMS AND SOLUTIONS 30

communication. By choosing an open standard for internet communication, Berners-Lee
created the first open, distributed hypertext system. Parallels may be drawn between the
effects of moving to the Web from close hypertext systems such as Xanadu and Notecards and
the effects of open source in the development of Unix (Raymond 1998; Raymond 2001). The
use of open source and protocols allowed the creation of new browsers (clients) and servers.
Most notable is the graphical browser, Mosaic. Mosaic was developed by the National Center
for Supercomputing Applications (NCSA) located at the University of Illinois at Urbana-
Champaign (UIUC) and was released in 1993. It subsequently formed the basis of both
Netscape and Internet Explorer (IE).

The invention of the URL enabled the location of almost any internet content to be described
by a single string. This allowed Web pages to start immediately linking to existing FTP and
Usenet resources. URLs all have two sections. The first denotes the protocol and the second
is protocol specific. For Web pages, the protocol-specific section specifies a server name and
a resource on that server. Typically, this resource description denotes a path to a file, or an
instruction to a server based program.

Evaluating the Web with respect to Conklin’s survey paper (Conklin 1987) is interesting. Of
note are statements such as the assertion that an “essential characteristic of hypertext is the
speed with which the system responds to referencing requests. Only the briefest delay should
occur (one or two seconds at most)”. Also, Conklin’s arguments that “window systems have
no single underlying database, and therefore lack the database aspect of hypertext” and that
DataBase Management Systems (DBMSs) “lack the single coherent interface to the database
which is the hallmark of hypertext” seem weak when given the example of the Web, where
data is pooled from multiple sources and where pages may take several seconds to return.

Of the features of previous hypertext systems which the Web is missing, Yahoo! and the ODP
go some way to providing global hierarchical support, the work by the W3C on XLink may go
some way to providing support for link types and arbitrary attributes, and there have been
many attempts at producing graph-based visualization tools for subsets of the Web. There
has been some work on navigation paths which will be discussed in sections 2.10 and 2.11.

2.3.1 Structure of the Web

The rising popularity of the Web has led many people to add their own servers and content
and to link to new and existing resources, forming a huge graph of links and pages.

Much research has gone into understanding the structure of the Web and the behaviour of
large groups of users. A popular model for describing the structure of the Web is the Bow-
Tie model (Broder et al. 2000) shown in figure 2.4. Broder et al. showed, by performing an
analysis of an AltaVista crawl of approximately 200 million pages and 1.5 billion links, that
the structure of the Web looks like a bow-tie, with a central Strongly Connected Component
(SCC) of around 27% of Web pages (around 56 million in the AltaVista crawl). An SCC is
a set of nodes in a graph in which any node is reachable from any other. By traversing the
graph or navigating the Web from any one of these pages, a futher 21% of the Web pages
(around 43 million) can be reached, in the OUT group. Another group comprising 21% of
Web pages (43 million) from which any page in the SCC can be reached, but which cannot
themselves be reached by traversing from pages within the SCC is called IN. Another group

CHAPTER 2. PROBLEMS AND SOLUTIONS 31

of TENDRILS contains around 22% (44 million) pages which can be reached from pages in
the IN group or from which pages in the OUT group can be reached. The fifth and final
group contains DISCONNECTED COMPONENTS which cannot be reached from any of the
other four groups. This group contains the remaining 9% (17 million) of pages.

TUBES AND TENDRILS - 22% (44 Million Nodes)

/ TUBE —

~
&
&
7‘5/\/
" _— Dp I
xev\‘)?‘\ \

SCC-27%
(56 Million Nodes)

IN-21% OUT -21%
(44 Million Nodes) (44 Million Nodes)

Disconnected Disconnected Disconnected Disconnected
Component Component Component Component

DISCONNECTED COMPONENTS - 9% (17 Million Nodes)

Figure 2.4: The Bow-Tie model of the Web.

The large SCC at the center of the bow-tie model is not the only such component to be
found in the graph of nodes and edges which represents Web pages and their associated
hyperlinks. There are a large number of such components and the distribution of their
sizes follows a power law (Adamic 2000). A power law implies that small components are
extremely common, whereas large components are extremely rare. Specifically, the number of
components, y, of a given number of pages, x is given by the equation y = Cz™ % Many man
made and naturally occurring phenomena, including city sizes, incomes, word frequencies,
and earthquake magnitudes, are distributed according to power law distributions.

The power law distribution of SCC sizes can be easily verified. Firstly a graph of the Web can
be constructed using the crawler and graph representation systems described in chapter 5.
Next, the SCCs must be found. This can be achieved using a simple algorithm consisting of
two Depth First Search (DFS) operations (Aho, Hopcroft, and Ullman 1983). The component
sizes can then be plotted against the frequencies on a log-log plot. The relationship y = Cz™¢
implies that log(y) = log(C) — alog(z) so the power law can be identified as a straight line
with slope —a. Because of significant clustering of data points near the z-axis, regression
on these plots can lead to skewed results. To prevent this, the values must be grouped into
buckets of exponentially increasing sizes (Adamic 2002). From the subsequent regression an
exponent value of approximately 2.5 can be obtained.

CHAPTER 2. PROBLEMS AND SOLUTIONS 32

SCCs are not the only phenomena, to follow a power law distribution though. Inlinks, outlinks,
frequency of hits, the number of pages in a Web site and the size of Weakly Connected
Components (WCCs) all follow similar relationships. The exponent values for all these power
laws are shown in figure 2.5.

Feature Exponent Source
SCC sizes a = 2.54 Broder et al. 2000
WCC sizes a~2.54 Broder et al. 2000
Indegree of Web Pages a =~ 2.09 Broder et al. 2000
Outdegree of Web Pages a~ 272 Broder et al. 2000
Inlinks to Web sites a~20 Adamic 2002
Outlinks from Web sites a~x20 Adamic 2002
PageRank of Web Pages a~21 Pandurangan et al. 2002
Pages in Web Sites 1.647 < a < 1.853 (95%) | Adamic 2002
Users visiting Web sites a =~ 2.07 Adamic 2002
AOL Users visiting adult sites a~1.65 Adamic 2002
AOL Users visiting .edu sites a~1.45 Adamic 2002

Figure 2.5: Power Law Relationships in the Web with exponents. Percentages denote

confidence levels for intervals. The PageRank citation index is discussed in section 2.6.

In order to explain these properties of the Web, new models for the its growth and evolution
have emerged. The original random graph models of Erd6s and Rényi have proven unsatisfac-
tory in this regard. The key to the new models is a process known as preferential attachment
(Albert, Barabési, and Jeong 2000) in which pages which have a high indegree are more likely
to be referred to by new links. This can be explained by considering a page with higher
indegree as being more popular more important and better connected. It is thus more likely
to be visited by a user who may then also choose to link to that page.

However, the model proposed by Albert et al. does not fit exactly with the empirical studies
of real-world data. Research is ongoing to find methods to improve the model — for exam-
ple, by combining preferential and non-preferential attachment (Levene, Fenner, Loizou, and
Wheeldon 2002).

CHAPTER 2. PROBLEMS AND SOLUTIONS 33
2.4 Resource Discovery

The Web is not the ultimate hypertext system that Nelson had envisaged. Nor is it the trail-
blazing vision of Bush. It is however both the largest and the most successful hypertext system
ever developed and it continues to grow exponentially. The ubiquitous Web has dominated
hypertext research in recent years and is likely to continue to do so, and it is important
to address the usability problems which arise (Nielsen 2000; Nelson 1999). The two central
problems are the resource discovery problem and the navigation problem.

The resource discovery problem is that of finding a given document on the Web or finding a
resource which answers a given question or which provides information about a given subject.
As the Web expanded so did the difficulty of finding information within it. Early solutions
involved pages of links to useful sites. One of the most popular of which evolved into the
Yahoo! directory (Yahoo! 2001). The construction of directories helped but did not solve the
problem and the need for an automated search solution was clear.

Search solutions developed along three lines. Directories, like Yahoo!, are still a major source
of information. The largest of these is the ODP or Directory MOZilla (DMOZ) started
by Netscape Communications Corporation and maintained by a large number of volunteers.
These directories use human judgements to categorize pages in a large hierarchy of categories.
Chapter 7 discusses how similar categorization schemes, used in information management
systems, can provide hints for trail construction.

The second solution came in the form of automated Web search engines (now known simply
as search engines), which found pages using extensions of information retrieval techniques
described in section 2.5. Early examples of which include WebCrawler (Pinkerton 1994;
Pinkerton 2002), Lycos (Mauldin 1997), Excite, Hotbot and AltaVista. Google (Brin and
Page 1998) appeared shortly after, having being developed as a Stanford project and is now
the most popular search engine. Fast’s AllTheWeb.com (Risvik and Michelsen 2002) also
gained popularity and a large influence. Further information on search engines can be found
at Search Engine Watch® and Search Engine Showdown®.

These search engines have often had difficultly providing sufficiently comprehensive coverage
of the Web. To provide better coverage results from several search engines may be merged
into a single result. This technique is known as Meta-Search. Popular examples of meta-
search engines have included Metacrawler, SavvySearch and Ask Jeeves, which was started
as a meta-search engine, but which has subsequently aquired the Teoma search engine.

Figure 2.6 shows the architecture of a typical Web search engine consisting of a separate
crawler (or robot), indexer and query engine. Various components can be combined, but are
most commonly separated. For example, although it is possible to combine the crawler and
indexer, search engines often separate the two to improve fault tolerance (Brin and Page 1998;
Pinkerton 2002).

The crawler downloads pages, parses them for the required text content and URLs (outlinks)
and adds the outlinks to a queue. The text data is stored on disk and ultimately converted
to an inverted file by the indexer. The inverted file maps keyword entries to lists of matching

3http://searchenginewatch.com/
* http://www.searchengineshowdown.com/

CHAPTER 2. PROBLEMS AND SOLUTIONS 34

Crawler
/ Robot

Index
Builder

Web Site(s)

WebGraph

Inverted File

User

Figure 2.6: Architecture of a typical search engine.

documents known as posting lists (Harman, Fox, Baeza-Yates, and Lee 1992; Baeza-Yates,
Ribeiro-Neto, and Navarro 1999). The query engine takes a user’s query from a Web page
form and returns a ranked list of pages. Each of the terms in the user’s query is used to
retrieve a posting list. Several posting lists are combined to give a ranked list of pages which
is returned to the user. This basic structure of a search engine has changed little since the
early engines and is unlikely to change soon, although some research has been conducted in
the use of Peer to Peer (P2P) technologies for resource discovery.

Crawling pages presents several issues. Ongoing research into the order in which to crawl
URLs has particular relevance to the Best Trail algorithm discussed in chapter 3. Crawling
pages using a breadth-first traversal leads to good pages, but crawling pages in order of
PageRank leads to better quality pages, but at a high cost (Najork and Wiener 2001; Cho,
Garcia-Molina, and Page 1998). Traversal strategies are made more complicated for crawlers
by the need to distribute crawling across a number of machines, to keep the rate of hits to
individual servers to a minimum, to obey the instructions of webmasters and to cover a broad
array of subjects and servers (Koster 1994). WebCrawler balanced these considerations by
using an adapted breadth-first search across servers where pages were sorted using a heuristic
algorithm (Pinkerton 2002). The Java-based Mercator robot handled distribution by splitting
the crawling such that each Web site was handled by a single machine. Thus, all URLs with
a common domain would then be kept within the same crawler’s queue. The prevalence
of links within Web sites improves the efficiency of this strategy and reduces interprocess
communication (Najork and Heydon 2001; Heydon and Najork 1999a).

CHAPTER 2. PROBLEMS AND SOLUTIONS 35

The Web Graph is stored separately from the inverted file, and can be stored in a relational
database (Pinkerton 2002) or a customized structure (Randall, Stata, Wickremesinghe, and
Wiener 2002; Guillaume, Latapy, and Viennot 2002). This data is used for link analysis
to improve the results, as described in section 2.6. The parsers typically have support for
HTML and plain text files and split the documents into keywords. In some systems this
is being augmented by customized filters which provide support for the Portable Document
Format (PDF), Postscript, Microsoft Office and many other document formats (Raghhavan
2001). Techniques for writing such filters are discussed in section 5.6. The query engine uses
information retrieval techniques to determine the documents most relevant to the query.

CHAPTER 2. PROBLEMS AND SOLUTIONS 36
2.5 Information Retrieval Techniques

The term Information Retrieval (IR) refers to the retrieval of documents matching some
given search request. IR systems have typically relied on techniques which fall into one of two
distinct research areas. Natural Language Processing (NLP) solutions model the structure
of the documents and queries, in an attempt to understand the text. Whilst this sounds a
sensible approach, only one major search engine, Ask Jeeves, claims to use any NLP techniques
and these are used only for query processing. One reason for avoiding complex NLP solutions
is cost. Scalability is of fundamental importance for Web search, so most search engines
rely on techniques based upon statistical properties of the text. Whilst it might appear
that statistical properties should be less effective, research shows that NLP solutions rarely
outperform systems using simpler statistical methods (Fagan 1987; Voorhees 1999; Cleverdon
1997).

2.5.1 Document Representation

In order to analyse its statistical properties, a document must be split into managable seg-
ments or terms. Most IR systems split a document at the word or keyword level and many
treat these keyword terms as independent. This leads to a popular document representation
known as the “bag of words”, in which all occurrences of keywords are assumed to be indepen-
dent and where ordering is assumed to be unimportant. This model is still important despite
moves by all the major search engines to incorporate proximity in the ranking measures.

An alternative representation is the n-gram model. An n-gram is a sequence of n characters
(including spaces) taken from the document or query text. N-grams may then be treated
in similar ways to keywords. None of the major Web search engines rely on this technique
as the number of n-grams in any string of text is usually much greater than the number of
keywords and the cost of processing is thus much higher. N-grams have been used in the
Telltale system (Miller, Shen, Liu, and Nicholas 2000) and in applications for the Department
of Defense (Damashek 1995), both of which use a value of n = 5. Figure 2.7 shows the bag
of words and bag of n-grams representations.

n-grams have several advantages over term-based indexing. They are considered more robust
against a high error rate which is useful in situations where spelling mistakes are likely, such
as in corpora resulting from documents scanned using Optical Character Recognition (OCR)
techniques. n-grams are also considered better for language agnostic solutions, where there
is also a reduced need for language specific operations such as identifying the separation
of words. Whilst identifying terms is an operation generally considered trivial for English,
it is considerably more complex for languages such as Japanese and Chinese which do not
use spaces between words in the same manner. Similarly, n-grams can reduce the need for
language-specific stemming algorithms, such as Porter’s algorithm (Mayfield and McNamee
2003; Cavnar and Trenkle 1994; Porter 1980).

It is considered by some that n-grams are better suited when the query strings are long and
that keyword-based approaches are more suitable for short queries (Mayfield and McNamee
1997; Mayfield and McNamee 1999). Given the short length of Web queries (Silverstein,
Henzinger, Marais, and Moricz 1999), this may seem like a good reason to adopt keyword-

CHAPTER 2. PROBLEMS AND SOLUTIONS 37

Figure 2.7: Bag of words and bag of n-grams representations. Terms are independent, and
ordering is not preserved.

based approaches. However, users have been shown to adapt to the abilities of search engines®.

If internet search engines performed better on verbose natural language descriptions, users
might be more inclined to use them.

Thus far, the term n-grams has been used to describe character tuples. It is also possible to
use systems with word n-grams — sequences of n words taken from the document or query.
Attempts have been made to extend the bag of words representation by incorporating word
n-grams and by incorporating topic and categorization measures (Mladenic 1998) although
there seems to have been no work in combining character n-grams in the measures. The IR
system developed and used for the experiments described in this thesis, is a keyword-based
system and is described in greater detail in chapters 3 and 5.

2.5.2 Scoring Metrics

Having described a theoretical model for the representation of the documents (and queries)
the measures which are used to calculate the score, or relevance, of a document must now be
described. This is performed by computing the similarity of a document to the query. One
of the most popular models used to achieve this is the Vector Space Model (VSM). In this
model, all documents and queries are modeled as vectors in n-dimensional space, where n is
the number of keywords common to both the query and the document. Incorporating words
which are in either one or the other but not both leads to zero values in the resulting equations
which can be simply cancelled out. The similarity is then represented as the cosine of the
angle between the vectors. In practice this can be computed very efficiently by computing
the sum of the normalized scores for all the query keyword weights, wg; and the document
keyword weights, wg. The similarity between a document D and a query () can be computed

5 One such example of this behaviour, as suggested by Nick Craswell of CSIRO, is of people who now use
Google instead of using bookmarks or favourites for identifying commonly visited sites. Before Google, links to
such sites would be stored. Now, due to improved home-page finding ability on the part of the search engine,
people can trust that they will be directed them to their requested page, encouraging an increase in home-page
finding queries. A classic example of this can be seen from the number of queries for sites such as CNN in the
aftermath of the September 11th attacks.

CHAPTER 2. PROBLEMS AND SOLUTIONS 38

as :
Similarity(Q, D) Z Wak Wk

Weighting schemes for both the document and query terms can now be defined. The most
basic metric used is the Term Frequency, tf, defined as the number of times a query term
appears in the document. Almost all modern information retrieval systems use this metric in
some form. Some common variations are tf, log(tf), log(tf + 1) and log(¢f) + 1 (Grossman
and Frieder 1998). The reasoning behind this measure is simple — the more times a document
refers to a given word or phrase, the more likely it is that the document is relevant to discussion
of that subject.

However, not all words are equal. Some words are more useful than others for describing a
document, or for discriminating between documents. Two schemes are used for dealing with
this discrepancy. Firstly, a list of “stop words” may be constructed. Stop words, for example
“the”, “and” and “which”, appear in many documents and are considered particularly poor
at discriminating between documents. Any occurrences of these words are removed from the
query®. Secondly, document and query terms are weighted according to the frequency with
which they occur in the corpus. The Inverse Document Frequency, idf, is typically defined as

where N is the number of pages in the corpus and df,, is the number of pages in the corpus
in which the term w appears. The variations dN and log il +1 are also used (Grossman and
Frieder 1998). It is also possible for df,, to be defined as the total number of occurrences of
w in the corpus.

The product of ¢tf and idf forms the commonly used tf.idf measure. However, tf is still
biased towards long documents, as long documents are inevitably more likely to contain a
given term that short documents. The solution to this is to normalize the document term
weights against some global document weight. One such normalized tf.idf system is that
presented in Salton and Buckley 1998 and described as the “best fully weighted system”.
This prescribes a document term weight of

N
tf.log T
\/Zvector tf log dflw

and a query term weight of

05t) 1og V.
tfmaz’ C df,

(0.5 +

the products of which are summed when the posting lists are read, to conform to the VSM
definition.

6 Stop words are not always useless. They may be considered ineffective for disciminating between docu-
ments, but may still be useful in phrases, such as “to be or not to be”, or in language identification (Wood
1998).

CHAPTER 2. PROBLEMS AND SOLUTIONS 39

A popular variant of the ¢f.idf measure is the Okapi measure (Robertson and Walker 1999;
Singhal 2001) in which the similarity between document and query is given by

S log N —df, +0.5 (ky + 1)tf (ks + 1)gtf
o dfw +0.5 “(ki((1—b) +b %)) +tf ks +qtf

where 1.0 < k1 < 2.0, b = 0.75 and 0 < k3 < 1000 are constants, and where dl and avdl are the
document length and average document length respectively. Both of these use normalization
techniques to reduce the unfair selection of long documents. The methods proposed by Salton
and Buckley sometimes over-compensate, creating a bias towards short documents. Singal
et al. propose a solution to this problem based upon a technique called “pivoted document
length normalization” (Singhal, Buckley, and Mitra 1996).

A complete alternative to the tf.idf variants is the probabilistic IR model popularized by
Spark-Jones and Van Rijsbergen amongst others. In this model, documents are returned in
the order of probable usefulness. The basis for computing these probabilities lies in earlier
work by Bayes on probability. For further information see Van Rijsbergen 1979; Crestani,
Lalmas, Rijsbergen, and Campbell 1998; Baeza-Yates and Ribeiro-Neto 1999; Jones, Walker,
and Robertson 2000.

2.5.3 Evaluation Metrics

Having defined methods for retrieving a set of documents, methods for evaluating the quality
of the results are now described. A corpus of N documents will be considered, of which ny
documents have been judged as relevant to a query, ¢, by the human user or assessor and from
which ng are retrieved by an information retrieval system. Figure 2.8 shows the relationship
between the sets from which the metrics shown in figure 2.9 can be defined. These are related
by the formula RG(1 — P) = FP(1 —G).

Returned | Not Returned
Relevant w T nm=w+=x
Not Relevant Y z
ng =w+y N=w+z+y+z

Figure 2.8: Korfhage’s matrix for evaluation metrics

Resolution = ¢ Elimination = N;Vm
e — N2—wW _ Y g aq —_m—w _ T
Noise = "2 = & Omission = "% =~
J— P J— L3 _ m
F = Fallout = —LN_m G = Generality = 3
P = Precision = % R = Recall = ;l”_l

Figure 2.9: Software evaluation metrics

Precision and recall are considered the most useful metrics for evaluation. Unfortunately
there is always a trade-off between these two metrics. It is trivial to obtain high precision
(and low noise) — by returning a single document, at the cost of low recall. It is equally trivial

CHAPTER 2. PROBLEMS AND SOLUTIONS 40

to obtain high recall — by returning all documents, at the cost of low precision. By plotting
the values of precision against recall at various points we obtain a saw-toothed recall-precision
curve for an IR system returning an ordered set of results. However, it is often inconvenient
to assess the precision and recall at each point, so values are plotted at fixed percentages of
the returned results. Using the values at 25%, 50% and 75% of the returned results gives 3
point precision. 11 point precision is determined using the points 0%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% and 100%. An average 11-point precision is the average of these
values.

A simpler alternative is to list only the precision at a fixed point. This is a common technique
in evaluating Web search engines, where the top-n precision is given. This is the precision
for the top n documents as found by the search engine. Common values for n are 10, 20
or 100. In evaluating search engines, recall is often ignored as the number of documents is
often huge, and users rarely examine more than the first few pages of results (Silverstein,
Henzinger, Marais, and Moricz 1999; Wolfram, Spink, Jansen, and Saracevic 2001). In this
situation, coverage is deemed more important and search engines consistently compete for
larger indexes (Sullivan 2001; Lawrence and Giles 1998; Lawrence and Giles 1999).

2.5.4 The Text REtrieval Conference

The Text REtrieval Conference (TREC) was set up by the American National Institute of
Standards and Technology (NIST) to provide a common forum for developers of IR systems to
compare results. It has been held annually at Gaithersburg, Maryland since November 1992.
The TREC WebTrack was introduced at the 8th conference (TREC-8) and has subsequently
replaced both the Ad-Hoc and Very Large Collection (VLC) tracks.

Four test collections are currently distributed by the Commonwealth Scientific and Industrial
Research Organisation (CSTRO) for the use in this conference track and for other research’.
The WT100g was formerly known as VLC2 and represents a large Web crawl. WT10g is
a subset of WT100g and WT2g is a subset of WT10g. The .GOV test corpus was used in
both tasks (named-page finding and topic distillation) in the 11th conference (TREC-2002)
(Craswell and Hawking 2002). Figure 2.10 shows the relative sizes of these corpora.

Corpus Size | Documents
WT100g | 100 gB | 18,500,000
.GOV 18 ¢gB Unknown
WT10g 10 gB 1,690,000
WT2g 2 ¢B 247,491

Figure 2.10: TREC WebTrack Collections

The TREC corpora provided are a useful resource for evaluating search techniques. Several
sets of queries are provided for testing and many of the documents which are likely to be
retrieved have been evaluated by the NIST assessors. However, the corpora are not without
substantial limitations:

7 See http://www.ted.cmis.csiro.au/TRECWeb/access_to_data.html for details of distribution. All data
is supplied on CD or tape.

CHAPTER 2. PROBLEMS AND SOLUTIONS 41

Size and Scalability

The size of the TREC corpus is given by many people as a major problem. CSIRO cur-
rently offer four test collections. WT100g, WT10g and WT2g are the 100Gb, 10Gb and 2Gb
collections used on earlier tests. A fourth collection, based on a crawl of the .gov domain
comes in at 18Gb. This seems like a lot of data, until the terabytes of information indexed
by commerical search engines are considered — along with the fact that TREC tests have only
used the 10Gb and 18Gb collections. There is a real and genuine concern that results on
these collections may not indicate viable solutions for the Web.

However, interesting problems can still be asked of a smaller corpus - particularly relating
to the area of site search. There are millions of Web sites which are large enough to require
separate search facilities. Usability expert, Jakob Nielsen has stated the importance of search
facilities on Web sites and the behaviour of users in expecting to be able to search sites
(Nielsen 1997; Nielsen 2000). Web sites are a good example of corpora which are of a similar
(or usually much smaller) size to the TREC collections and where good search facilities are
essential.

There is an often-ignored issue with larger engines scaling down. Economies of scale may be
lost and the cost-per-megabyte of indexing may increase. Moreover, a lack of data may affect
the quality of results. For example, link text on the Web provides a strong indicator of a
sites content (Brin and Page 1998; Cutler, Deng, Maniccam, and Meng 1999). With smaller
corpora, there are fewer links and the quantity of link text is naturally reduced. A system
which returns 1000 pages from the Web in answer to a query might only return a very few
pages on a site. More resources may be granted to some site searches because of the smaller
corpus size and the mission-critical nature of the Web site. For example, a user failing to find
a Web site with Google may be inconvenienced. A user failing to find a product at Amazon
may mean lost revenue. This increased importance should imply an increase in search quality,
but this can only be achieved with proper evaluation. What is needed is a mix of sizes. The
WT2g and WT100g collections provide this. Unfortunately, they do not have the same depth
of query information and relevance judgements, so analysis is restricted to the WT10g and
.GOV collections.

Language

The Web is a multilingual resource. Google’s Zeitgeist® shows that almost half of the queries
submitted were in non-english text and that the proportion of non-english queries is grow-
ing. Web search facilities (even for site search) need to be able to work with documents in
multiple languages. The TREC corpora are all heavily biased towards English with relevance
judgements only given for English language questions.

Relevance Judgements and Ranking

All TREC documents are assumed to be irrelevant, relevant or highly relevant to a given
query, and are judged only on the text content. In practice there are many different levels of

Shttp: //www.google.com /press/zeitgeist.html

CHAPTER 2. PROBLEMS AND SOLUTIONS 42

importance and relevance which are not considered. It has been shown that there are con-
siderable discrepencies between the performance of Web search systems and those algorithms
which perform best under TREC conditions. TREC algorithms which take no account of
linkage information have still been able to achieve very high scores with respect to TREC
measures.

The most important issue with regard to evaluation of the results in this thesis is that TREC
judgements fail to take navigation possibilities into account. A page may not contain the
answer to a query, but may link to several which do. Such a page would be considered non-
relevant in TREC, but might be useful to someone who was willing to investigate further.
The TREC corpora are also limited in the information they provide. CSIRO does not provide
any data on query history, navigation history, bookmarks or other information which might
be available to either a search engine or client-side search tool for a real user. Hence testing
of personalization is beyond the scope of the TREC experiments.

CHAPTER 2. PROBLEMS AND SOLUTIONS 43

2.6 Web Page Metrics

The size, structure and markup of the Web leads to a number of possible improvements
which can enhance the utility of the search results. Some of these will be briefly discussed.
Alternative descriptions of most of the metrics may be found in Baeza-Yates and Ribeiro-
Neto 1999. Many of these metrics can be expressed in alternative forms, such as the result of
computing principal eigen vectors on a matrix describing the Web’s structure.

2.6.1 HTML Tag Weighting

With HTML documents, further term weighting is possible based upon the position of the
term in the HTML tags. Two studies have been conducted into the effects of tag weight-
ing schemes. The first was conducted using a small corpus and a set of 20 questions and
incorporated anchor text from pages linking to the given page, a commonly used measure
also suggested in Brin and Page 1998. The first results were presented in Cutler, Shih, and
Meng 1997. The experiments were subsequently repeated using a Genetic Algorithm (GA)
and presented in Cutler, Deng, Maniccam, and Meng 1999. The second study, also refers to
a GA used to learn HTML tag weights and was conducted using a larger corpus (the TREC
WT2g corpus) but did not consider text on inlinks (Kim and Zhang 2000). Figure 2.11 shows
the schemes proposed in both of these papers.

g?g Tzrpe (no html kup) Wellghts HTML Tag Weights

Hf‘m dafé 1o Mbmi hatiup] Title 0.5584 + 0.2822
Ho an - | Header | 2.3425 + 0.2614
STRONG, B, EM, I, U, DL, OL, UL 8 Bold 1 0.7060 £ 0.2061
TITLE . Ttalic 1.0192 + 0.3128
rulink Text ; Anchor | 1.7634 + 0.1306

(a) Cutler et al. (b) Kim et al.

Figure 2.11: HTML tag weighting schemes proposed by (a) Cutler et al and (b) Kim et al.

Thus tf can be redefined as the weighted sum of the number of equal terms in the body of
the document, the number of equal terms in the headings and titles of the document and the
number of equal terms defined in links referring to the document. Equality in this case may
be case-sensitive or case-insensitive. The tf.idf values given as document term weights are
re-used as the term weights for the summarization algorithm described in chapter 5.

Traditional IR approaches work well for flat-text systems where the authors can be relied
on to follow consistent style, write metadata comments that would be helpful to the user
and be non-competitive. However, Web search engines are heavily “spammed” to influence
results. Search engine spamming involves manipulating meta-tags, the insertion of text which
is invisible to the user and the creation of “nepotistic links” (Davison 2000). The quality of
the data is low and text alone cannot be relied on for evaluation. One solution to this is link
analysis — the science of extracting information from the hyperlinks available and using this
information to improve results. The roots of this research stem from much earlier work in

CHAPTER 2. PROBLEMS AND SOLUTIONS 44

citation analysis and typically stem from the idea that a link conveys approval of the cited
page.

2.6.2 Landmark Nodes

An early attempt at using link structure was described in Mukherjea and Foley 1995. Land-
mark nodes were defined as those nodes in the top 10% of those in the graph when scored
using the formula

importance = (I + O) x wt; + (SOC + BSOC) x wty

where wt; + wto = 1.0, I is the number of inlinks, O is the number of outlinks, SOC' is
the number of second-order-outlinks (outlinks of outlink) and BSOC is the number of back-
second-order-outlinks. Suggested values are wt; = 0.4 and wis = 0.6.

This importance metric was later extended to incorporate access frequency and depth. Using
the importance measure above as a measure of “structural importance”, Mukherjea proposed

the formula
S A D

k k
az(S) 2ma:z:(A) 3max(D)
where S is the importance measure given above, D is the depth of a page in a Web site, A
is the frequency with which this page is accessed and ki, k2 and k3 are constants. Once the
landmark nodes are identified they can be used to provide context for each page the user
visits as he navigates through the site (Mukherjea and Hara 1997).

importance = kq
m

2.6.3 Hubs and Authorities

Kleinberg 1998 proposed an algorithm for Hyperlink-Induced Topic Search (HITS) which
gives two scores for each page with respect to a given query. These are a hub score and an
authority score. It was proposed that the best hubs and authorities would be returned as
results for any given query.

The algorithm, which formed the basis for IBM’s Clever project, starts by submitting a query
to a search engine, which returns a small initial set, of around 100 pages. This set is expanded
by examining each node and adding all the pages to which the node links and some or all
of the pages linking to this node. This gives a new set which should contain the best pages
for that query. The next stage of the algorithm is to compute the best hubs and authorities,

using the scores:
Hp)= > AQ)
leoutlinks(p)

which is the hub score and

Ap)= >, H(O

l€inlinks(p)

which is the authority score. One major problem with this implementation is the need for a
large seed set from which the returned results will be selected.

CHAPTER 2. PROBLEMS AND SOLUTIONS 45

2.6.4 PageRank

A simpler metric was PageRank — used by the Google search engine (Page, Brin, Motwani,
and Winograd 1998; Page 1998). A PageRank is a single number assigned to each page in
the Web graph. The higher the number, the greater the supposed importance of the page.
PageRank was originally defined as

1€ Bj

where B; denotes the set of page linking to j (backlinks) and F; denotes the set of pages
linked to by i (forward links). This was altered to

pi =P gy

iEBj

P (i)
| F3|

in an attempt to handle the problem of “rank sinks” where rank is “lost” due to the lack of
forward links. f is referred to as a damping factor and is typically set to values of around
0.85. There are several ways to view this rank, but one of the simplest is that PageRank is
the probability that a “Random Surfer” will be at a given page at any given time.

The papers by Kleinberg and Page et al. are amongst the most well-known and well-cited
in the field and have subsequently formed the basis for a great deal of further research. It
is interesting to note that the system using PageRank (Google) has become the dominant
search engine whilst that using the Hubs and Authorities model (Clever) has failed to achieve
the same level of success. It is the author’s belief that the primary reason for this is the
complexity of the calculations. Research has shown that response time is the biggest factor in
Web usability (Nielsen 2000), and that sub-second response time is required by search engines
under heavy load. The complexity of Kleinberg’s algorithm leads to an unacceptable cost in
resources.

Topic-Specific PageRank

There have been several attempts at introducing a topic or query sensitive variant of PageR-
ank. A topic sensitive PageRank was introduced in Haveliwala 1999 in which invididual
PageRank vectors were computed for each of the top-level categories in the ODP — giving 16
topic specific rank vectors.

Richardson and Domingo went further and proposed a system in which a term-dependent
PageRank is computed for each unique term in the corpus, potentially doubling the inverted
index size. This score is then combined with an IR metric at query time (Richardson and
Domingos 2002). The proposed scheme extends the PageRank formula to incorporate page
relevance with respect to a query term ¢ to give

Py(j) = (1 = B)Py(5) + B D Py(i)Pyli — j)

iEBj

where Pé(j) specifies the probabilty of a surfer visiting page j when not following links and
P,(i — j) is the probability of a transition to j given that the surfer is at i. Py (i — j) is

CHAPTER 2. PROBLEMS AND SOLUTIONS 46
defined, using the relevance R,(i) of a page ¢ with respect to a query g, by

) N R,(5)
Pl == 2w

This formula is used to compute PageRank for all matching nodes for each given term.

Lempel showed that both PageRank and Kleinberg’s HITS metrics could be influenced by
a phenomenon called the Tightly Knit Community (TKC) effect (Lempel and Moran 2000).
The mutually reinforcing nature of the Hubs and Authorities metric can be compromised by
small highly interlinked groups and these will dominate search results regardless of quality.
Lempel’s work on the Stochastic Approach for Link-Structure Analysis (SALSA) lead to an
extension of HITS that was less vulnerable to the effect.

An interesting tangent to the work on PageRank was provided by SimRank (Jeh and Widom
2001) which applied the principles of PageRank to the problem of similarity measurement.
They used the concept of a node pair graph, a graph G? = (N2, E?) constructed from an
original graph G = (N, E) in such a way that a node (z,y) exists in N2 for each z and y in
N and a link ((z,v), (v,w)) exists in E? if and only if there exists two links (z,v) and (y, w)
in E. Upon this graph is computed a SimRank equivalent to the original PageRank, giving
a similarity measure for each document pair. They also considered a similarity measure for
bipartite graphs based upon Kleinberg’s HITS algorithm.

2.6.5 Combining Metrics

To be useful in IR systems, the PageRank, Hubs and Authorities score must be combined
with existing text-based metrics. All the major search engines combine text-based retrieval
techniques with link-based ranking measures, but there is very little information on how
these metrics are combined. WebCrawler (Pinkerton 2002) combines external page scores,
generated from link-analysis (in this case the number of distinct servers linking to a page),
using the formula

score(doc) = a.relevance(doc, query) + (1 — a).external(doc)

where

1
a= ma:v(g, 1-— 20 log(C))

where C' is the number of documents matching the query. This allows pages for queries where
the keywords discriminate between pages well to be scored predominantly on the IR score.
For queries where keywords fail to discriminate between documents, the pages will be scored
to a greater extent on the citation weight.

CHAPTER 2. PROBLEMS AND SOLUTIONS 47
2.7 Non-Linear Search

Having established the importance of link analysis in improving the quality of Web search
results, and having a partial solution to the resource discovery problem, search engine research
has recently progressed to finding better ways to present results which show context, metadata
and link structure. Traditional search engines have focused on returning a simple ordered set
of pages. By removing this constraint, many possibilities for research present themselves.

2.7.1 Question Answering

AsklJeeves is a popular search engine which takes natural language queries and attempts to
provide Web pages which supply the answer. There are many situations in which a single
answer to a question is all that is required. Three systems have been developed to provide
the answers:

Mulder (Kwok, Etzioni, and Weld 2001) takes a question and returns a list of possible
answers with the confidence of each answers validity. The question is given in a natural
language (English) and the corresponding parse tree is generated from it. This parse
tree is used by a classifier to identify the type of answer which should be expected. A
query formulator translates the parse tree into a series of search engine queries, which
are issued in parallel to the search engine. The relevant pages are downloaded and
parsed by an answer extraction module to generate small extracts, or summaries, which
are used to select candidate answers. These candidates are then scored and ranked by
an answer selector before being presented to the user. Kwok et al. claimed superior
results to Google but subsequently withdrew the engine due to performance concerns.

AnswerBus (Zheng 2002) is a similar system, with improved multi-lingual support — ques-
tions can be posed in English, German, French, Spanish, Italian and Portuguese, but
only answered in English. Relevant pages are downloaded and parsed from five search
engines. Zheng claims that the “current rate of correct answers to TREC-8’s 200 ques-
tions is 70.5% with the average response time to the questions being seven seconds”.

NSIR performs the same basic operations, with probabilistic techniques for passage and
sentence extraction, and answer ranking (Radev, Fan, Qi, Wu, and Grewal 2002). It
is claimed that the algorithm, Probabilistic Phrase Reranking (PPR) “achieves a total
reciprocal document rank of .20 on the TREC 8 corpus”.

2.7.2 Category-based Clustering

A simpler alternative is to re-order the resulting pages, not in order of relevance, but grouped
or clustered according to the subject or topic of the returned pages.

Mase reported on experiments using a simple keyword-based dot-product categorization al-
gorithm (Mase 1998). Normalized keyword frequency vectors were stored in a “knowledge
base”, which was reduced in size using a choice of filtering techniques.

Pratt et al. used a domain-specific knowledge base in the development of Dynacat, a system
for dynamically categorizing search results (Pratt, Hearst, and Fagan 1999). Using a medical

CHAPTER 2. PROBLEMS AND SOLUTIONS 48

database as an example, they classified queries by type, such as “problem-diagnoses” or
“treatment—problems”. The knowledge base held these query types, which could be selected
by the user, acceptable category areas and a mapping between terms and their semantic types.
Processing involved taking a document and comparing its terms against a set of criteria. The
matching criteria determined the category headings. The final results were then grouped
under these categories.

Hearst, et al. developed a tool called Scatter/Gather, which also clustered search results.
These clusters could then be selected or deselected before reclustering, thus eliminating the
need to view large numbers of documents (Hearst, Pedersen, and Karger 1995; Hearst and
Pedersen 1996; Hearst 1997).

Grouper (Zamir and Etzioni 1999) is an extension of the HuskySearch meta-search engine
which uses Suffix Tree Clustering (STC) to cluster search results based on the content of the
document summaries. The STC algorithm works by stemming the document keywords and
removing surplus markup and punctuation, using a suffix tree to organise the documents and
create base clusters then combining these base clusters into the clusters to be shown to the
user.

Vivisimo is another meta-search engine which organizes results into a classification hierarchy
or tree. This classification tree is displayed on the left hand side alongside the main results,
as shown in figure 2.12. Users can access search results through the normal sorted list or
navigate through this hierarchy.

/@ Vivisimo Clustering Engine - Microsoft Internet Explorer =18(x|

Edt Yew Fovortes Toos Help [= |

Gaback + = - @ [& Beach [GiFavortes Gitedia F | e Q9 |
address [E] — 2CHISN % 2CHetstape Yot yaas%s2CLoksmart7aC| B
company | products | demes | partners | press
YW s, s
v Vivisimo [emiga Searn e wen 5
» Advanced Search » Helpl » Tell Us ¥hat You Thinkl
Clustered Results Top 175 documents retrieved for the guery amiga =
i+ amisa (175)
5] Buy and Sell Amiga On eBay. ien Windo] (Full indou [Freview] rad L
: 3 iy wharesyou wil-fnd grast buoys o Amigaand o much mors nclidiig edllectbles: Jewsliystoys; ket and matical tome fherelbthing, and
Commodore Amiga i
¥ Commodore Amiga (12) camputers. - adtam, mediaplex. comiaick? | 1-600-3303-D2lac=hitp search
- Maintained, Cothputers (2)
@ Lisers Groun (3) Search For “Amiga” Music CD'S ew Windo] [Full indow [Frevien] ot
- ¥ Documentation For Amiga (2) Find cds by the artist "Amiga" at Songsearch CD Stare. Over a half million cd titles to chose fram. Import and hard to find cds are our speciality/.]

® Diavs Haynie Archives v, songsearch.com

@ Fodo
P 5 1. Amiga Web Difectory ien Windost [Full Window [Freview]

Qther Topics () Comprehensive Amiga resource offers detailed coverage of hardware, fiee softwate, product reviews and news[..]
» Network (10) URL: i, CUC UG orgéamiga. himl

Soures: Laskeman 2nd, Netseape 3rd, MSH 2nd, Lyess dth

© » Magazin (1)

»-Clids (12) 2. AMIGA Intemational ~wewWindon] [Funl windo
» Q@) Geared towards Amiga enthusiasts, the site insliies deger lists, recent software news, available produsts and links to Web directories

» Computers, EBay (8)
» Future (6)
- » Amiga User's Group (8} 3. Amiga.org [New window] [Full Window] [Preview]

Latest classifieds. - Wanted : Wanted: Amiga 1200... - Wanted : A2091 or A4097 SCS Forsale : Adpro 2.5 (boxed) .. - For sale - Amiga NEWTEK
» Amiga Hardware (7) VIDED.

URL: Wi amiga ory/
Souree; Hatioape 2nd,

4. UAE - The UAE Amiga Emulator puew window [Full windon [Frevien]
Guide to the software explains what it does and which systems support it. Obtain instructions for downloading, a list of features and links,

pe Bth, Lysos6ith

5. Amiga Network News pien wingou] [Full window] [Previsw]
L 2t)
005, Lookemart Bth, Netsoar

6. amiga-news.de - Amiga News auf den Punkt gebracht (newwindon] [Ful Window] [Previen]
Alles rund um den Amiga it tagesaktuellen Amiga News und Amiga Link Directory, Forum, Tipps und Tricks
L S del

urce: 1SN 3, Hetscape T

7. Made on Amiga (Mewwi [Full Window] [Previen]
Made an Amiga showcases weh 5“55 created hy or maintained an Commoadare Amiga computers. Organized in a portal fashion |

a /i [Search the results D | Buy and Sell Amiga On eBay. save

] bt/ thile ro e [[[e meemet

Figure 2.12: Vivisimo’s clustered search results.

CHAPTER 2. PROBLEMS AND SOLUTIONS 49

One view of the clustering problem is that it represents the task of finding the k centroids
in a set of n > k points such that the sum of the euclidean distances to these points is
minimized. Drineas, Frieze, Kannan, Vempala, and Vinay 1999 took this definition, relaxed
it and attempted to find efficient solutions to the relaxed problem using an algorithm based
on the Singular Value Decomposition (SVD) of the adjacency matrix. Their work at Yale
university formed the basis for the Manjara clustering engine which was widely cited but
which has subsequently been withdrawn from service.

2.7.3 Link-based Clustering

An alternative method of grouping pages is using clusters of pages formed by analysing the
link topology.

Flake et al. define a Web community as a set of nodes which contains more links (both inlinks
and outlinks) to nodes which are members of that set than to nodes which are not members
(Flake, Giles, and Lawrence 2000; Flake, Lawrence, Giles, and Coetzee 2002). They identify
such communities using a variation of the Max-Flow-Min-Cut algorithm. It should be noted
that, unlike those described in Kleinberg, Gibson, and Raghavan 1998, these communities are
independent of query or topic and can be computed a-priori.

Li et al. proposed the idea of an information unit — a small set or cluster of connected pages
returned in answer to a user’s query (Li, Candan, Vu, and Agrawal 2001). Specifically, an
information unit is a weighted subgraph or Steiner tree extracted from the complete Web
graph. The problem of computing even a single optimal Steiner tree is NP-hard, so the
algorithm given computes k£ suboptimal information units of pages which together contain
all the query keywords. Li et al. also show extensions to the algorithm to deal with clusters
which contain less than all the query terms. What they do not discuss is any mechanism
for displaying the information units to the user or for dealing with the inevitable volume
of redundant information which will arise from deploying an information-unit system in a
real-world environment.

CHAPTER 2. PROBLEMS AND SOLUTIONS 50

2.8 The Navigation Problem

The second major problem on the Web is the navigation problem (Levene and Loizou 1999),
which can be expressed simply as “How can we stop people from getting lost in hyperspace?”
A person is said to be “lost in hyperspace” if they are navigating (or browsing) the Web
(or some other hypertext) and are either unsure of where they are relative to another page,
unsure of which link to follow in order to find what what they’re looking for, unsure of where
they’ve been or unsure of where they will get to when they follow a given link.

The navigation problem is distinct from the resource discovery problem, but the difference
is subtle. One way to demonstrate the difference is to consider the questions a user might
ask when faced with each problem. If the user is asking “where can I find this 7” it’s a
resource discovery problem. If a user is asking “how do I get to that 77 it’s a navigation
problem. Typically the user’s need can be satisfied by a URL in the first case or by a set
of links or a tour in the second. Users who are given different tasks may face either or both
of these problems, and react accordingly. This was noticed in early hypertexts where users
exploring the corpus to learn about a subject might make heavy use of guided tour facilities,
whereas those trying to answer specific questions would tend to use index or search facilities
(Hammond and Allinson 1989a; Nielsen 1989).

Whilst search engines help to solve the navigation problem by providing facilities to help
people find what they’re looking for and start the navigation process, they fail in that they
do not provide support for users once they have their initial results, and in that they do not
show results in the context of the pages around them. They also contribute to the problem by
directing users to the middle points of a Web site or hypertext with no reference to important
points, such as home pages, etc.

CHAPTER 2. PROBLEMS AND SOLUTIONS 51

2.9 Navigation Aids

There have been many attempts to help solve the navigation problem through the construction
of navigation aids, many of which attempt to suggest single links for users to follow or provide
visualization strategies for showing the relationships between large numbers of pages.

2.9.1 Link Suggestion

Autonomy developed the Kenjin system for suggesting “interesting” links, based on Bayesian
probability theory. The Adaptive Probabilistic Concept Modelling (APCM) used by Au-
tonomy is designed to analyse “correlation between features found in documents relevant to
an agent profile” (Autonomy 2003). WebWatcher is a system for helping user navigate by
suggesting single links from pages, using a proxy to redirect browsing activity via a server
(Joachims, Mitchell, and Freitag 1995; Joachims, Freitag, and Mitchell 1997). Gori, Maggini,
and Martinelli 1999 describes a system to Navigate AUtonomously and Target Interesting
Links for USers (NAUTILUS). NAUTILUS is a proxy-based navigation aid which utilises the
interesting technique of representing HTML Web pages as graphs and using these as inputs
to a neural net.

An alternative is not to suggest links but to try and provide more information about the links
being selected. TileBars are small images which can be displayed next to a link to show the
relative position in the document of each of the query terms (Hearst 1995). These can be
placed next to search results, where a score or PageRank might otherwise be placed.

Weinreich and Lamersdorf describe a proxy-based system which adds elements to pages to give
highly descriptive pop-up windows for each link (Weinreich and Lamersdorf 2000). The pop-
ups display metadata such as the title, author, size and Multipurpose Internet Mail Extensions
(MIME) type (Freed and Borenstein 1996) of each page linked to. Geisler describes a similar
pop-up system, but with separate subsections for “Preview”, “Overview” and “History”, each
of which is activated by rolling over the section title with the mouse pointer. Their system
displays similar information, including the number of outlinks from each page and a small
thumbnail preview (Geisler 2000).

2.9.2 Site Maps

Site Maps present an overview of an entire Web site from which visitors can reach all parts of
the site very quickly and provide a great deal of context. Tabular formats are very popular,
being used by Lycos (as shown in figure 2.13), Cnet?, Intel'®, Google!! and Yahoo!!? amongst
others. Circular layouts are less popular. In these layouts, pages radiate from a central hub.
Figure 2.14 shows an example of a circular layout combined with other elements. Apple have
previously experimented with tabular and circular layouts and are now presenting results in
a long list, as shown in figure 2.15. This is another very popular format. Single column lists

9 http://www.cnet.com /sitemap/0-2253447. html
19 http://www.intel.com /intel /nav/sitemaps.htm
M http://www.google.com/dirhp
12 http:/ /www.yahoo.com/

CHAPTER 2. PROBLEMS AND SOLUTIONS 52

are used by ESPN and CNN. Two-column lists (technically these are also tables) are used
on sites belonging to organizations such as NASA, New Scientist'® and the IMF!*. Typically
lists are either clustered together or sorted. Clustering may be done by topic, subject or
department whilst lists may be sorted in alphabetical or chronological order.

— Lucos Home > Site Map
GveightWatchers
feigl chers
weight loss that fits your life, now including an online plan [GONGWE
Tools Lycos Topics Search Shopping
* Auctions r Autos + Add Your Sits to Lycos +Autos
* Chat + Advanced Search +Babies & KRids
* Classifieds * Audia #Back ta School
*Clubs + E-mail Addresses +Bargains
o Domain Name o HotBot Search e Clothing 8
Beaistration ¥ s Jobs s Cornputers
* E-mail rofiles, Job Search, Resumes, o The Lycas S50 o Electronics
+E:mail Addrass Search Heb: R + mp3s + Health & Baauty
+Help ¥ FUHE‘ :er i i + Darental Controls + Music
Dating, Entertsinmant, Jobs, Library ..,
+ Horosropes 2 Ren B « Pictures + Softare
+Image Galleries +» Computers o Bofparaidpmrlond + More Shapping
D loads, Hardware Reviews, Help 8 How-Ta,
* Instant Messenger w?:r — — ted Mt gt o Bkn i
+ Inkernet Access + video

Shopping Services

s Maps

+Message Boards
» Mobile/Wireless
+MPEs

* Multimedia Search

» Websites Directory
» white Pages
o vellow Pages

* fuctions
* Classifieds
+ Request-f-Quote

Personalize Lycos

s Esrental Controls About Lycos.

; * E-miail
+ Bersonalize Lycos) « dd Your Site to Lycos
« Personals & Dating i Advertize on Lycos
» Advertise on Lycos
* Bhotas (sharing) *bybicos

s Corporste Information

* Software Downloads + Web Site Building

e Jobs st Lycos

* Stocks tions A-2, Medical Library, News, +Press Releases

+ Translate e -Direetove, oy Lycos Networlc +Send Us Feadback
+ T Listings + Anaelfire

- WARFEME « Gamesville

» weather htrl GEAR

« web Site Bujldin: T W S + Hothot

» White Pages g + HotWired

Tellow Pages " ”
+Yellow Pages R « Mstchmaker

Vi * Sonique
Beeaking Wews; Photos, Cartbons, + Tripod

Figure 2.13: Lycos’s sitemap. The pages are shown in tabular format.

Some site maps use metaphors to display the results. Figure 2.16 shows a sitemap from
Jam Design which uses a spaceship metaphor. Other metaphors used in Web sites include
circuit boards, solar systems and company products (Kahn and Lenk 2001). Site maps can
also mirror geographical maps, as in the example from the American Federal Aviation Ad-
ministration (FAA) shown in figure 2.17. Other examples including Peter Burden’s map of
UK Universities'® and London Underground’s TubeGuru'® - a clickable Tube map showing
entertainment options in close proximity to each station.

13 http://www.newscientist.com/thesite/tssitemap.jsp
4 http://www.imf.org/external /map.htm

'5 http://www.scit.wlv.ac.uk/ukinfo/uk.map.html

16 http://www.tube.tfl.gov.uk/guru/index.asp

CHAPTER 2. PROBLEMS AND SOLUTIONS 53

ExPASYy site map

SWISS-MODEL
Ay torraded
et i

SYISS.3DIMAGE SWISS-MODEL repository
e kol e i
o

CD40LEase [SWISS-PROT Docs
CI40lizand defects <l

HeghnalRef
Sequance aralysis
biblicgraphic mfmrces

SWIES-FDBViewer|
3D strachure visualizaio:

Proteomics tools

Protein idertification tools II
o Protsin char acterization tools II

SRS Sequames | Sequence anslysistonls
" Retieval System
ENZYME
S Biochemical Patiways

155 2DSERVICE
2D gel Lah service ‘Ansngm ous FTP server
30 training course Wotld 2D-FAGE
Cmeweek conse in Gereva

‘Huiss Flash 3 ;
Flectont ot oens | | Tt oF docurents [Fafsser]
Lagent ok e | D () EEED omis oo

SWISE-FROT
& TrEMEL

PROEITE
Prnitein families and doonaing

SWISE-ZDPAGE
2D gel electiophoresis

MELANIE
2D gelamlysis softraz

BwissShop
Artomatically ch tain ne
sequence; relevant to you
field of mrterest

Figure 2.14: ExPASy’s sitemap.

Some sitemaps attempt to use form elements for navigation. Figure 2.18 shows a sitemap
from the Journals of the American Medical Association (AMA) where HTML select elements
are used to select areas of the site. The sitemap for the american Small Business Admin-
istration (SBA)!7 takes this to further extremes where every option is embedded in such a
list. Merriam-Webster!® presents the hierarchy in an interactive tree which hides some of
the complexity of the site. However, these designs all make navigation more difficult, require
more clicks (typically one to select an element and one to submit unless JavaScript is used)
and the links are less likely to be followed by robots. Many site maps also fail in conveying
multiple levels of the site’s structure and usability tests have shown that users often overlook
site maps. It is vital that maps aid the navigation process — not provide further challenges
(Nielsen 2002).

7 http://www.sba.gov/map.html
'8 http://www.m-w.com/map-new.htm

CHAPTER 2. PROBLEMS AND SOLUTIONS

54

(. Y Store T Switch 1 .Mac [QuickTime T Support
Hot News Hardware Software Made4Mac Education Creative SmallBiz Developer

| wmacosx
Where to Buy

Apple.com Site Map

About Apple

Contacting Apple — Fhone Numbeis | Website Feedbads| | Sites

Investor Relations — Stode Quote | Financial Releases | Calendar

Jdob 0 ies — Job Search | Hiring Ewents | College | | Benefits

Legal Information — Priva

Fublic Relations — Contacts | Exec Bios | Fress Relaase Library
dith ere to Buy — Apple Store Online | Retail Stores | Find a Reseller | Resource Locatar

Additional Inta — | | Supplier Diversity | Weh Badges

News & Events

eMews — Subsoribe | Current eMews | 2002 Schedule

Hot News — Recent Stories | Features Archive | Events Archi

Additional Info — hacintosh Products Guide | Seminars & Events | Uzer Groups

switch

Switch — Wihy Switeh? | Questions | TV Ads | Real Stories | Press | Howto Switeh | How to Bu

Hardware & Software Products

ot — Tech Specs | Wireless Holspols | At Home | On Campus

Apple Remote Destop — Tech Specs| In the Classoom | At iod

—Leam | Help & Examples | Free Seripts | Seriptable Apps | Mac 0S X | Devel
leShare P — Features | Benchmaks | Third Parby | Sofhuare | Uihere to Bu

— Specs | Newsleter | P2y Planning | Garage Sale | Resume | Seience Repart | Extras & User Groups

Cinema Tosls — Tech Specs | Film | 24P HO | Final Cut Pro | Resources

CalorSune — Benefits | Woddlows
Displays — Cinema HD Displaw | Cinems Display | Studio Displaw (17| Studio Display (15" | DVI to ADC Adapter
DVD Studio Pro — Teoh Specs | Dveniew | AudioAfideo | Wodlow | Resources

2Mag — Tesh Spees | 34 Processor | Graphics & Sound | Digital Hub | Internet | Software

Final Cut Express — Tech Specs | Features | Seiting Staded | Training | Besources

Final Cut Pro — Tech Spees | Ovenien | Stories | Training | Resources

ook — Specs | Digital Hub | Sraphics | Wireless | Sotiware

Al — Free Damnlaad | Nmanize wanr Ralendars | Share Ninling | Galandarl hran

Figure 2.15: Apple’s sitemap.

CHAPTER 2. PROBLEMS AND SOLUTIONS

ABDUT 1AM RESEARCH & WRITING GALLERY

Copyright 2002 Jam Design Inc, 617,247.9465

Figure 2.16: An Unidentified Flying Sitemap!

55

CHAPTER 2. PROBLEMS AND SOLUTIONS

=
!

Arkansas
Arizona
California
Colorado
Connecticut
Delaware
Florida
Georgia
Hawaii
long
|daho
inois
Indiana
Kansas

Kentucky
Louisiana

Figure 2.17: Sitemap showing information from various weather observation areas.

_i,,,: “The Federal Aviation Administration

Home

Automated Weather Observing Site Map

(To view the weather conditions at a commissioned site, click on a state, then click the blue hyperlinked site 1D in the table.)

Massachusetts
Maryland
Maine
Michigan
Minnesota
Mississippi
Mlissouri
hiontana
Mebraska
Mevada

ew Harnpshire
Mew Jersey
Mew Mexico
Mew Yok
Marth Caralina
Marth Dakota
Ohig
Oklahoma

S ey
[HI] >

Site Map

DOT

Other
Pacific

Ask FAA Search

Other
Caribbean

Oregan

Pennsylvania
Rhode lsland

South Caralina
South Dakota
Tennessee
Texas

Utah

“ermont
Yirginia
Washington
Washington, DC
Wisconsin
West Virginia
Wy oming

Other Pacific
Other Caribbean

56

CHAPTER 2. PROBLEMS AND SOLUTIONS 57

SITEMAP

B Science News Update B Classified

: : Feedback
| B Ak Information Centers = .Go E-Mail Alert N
B EMail Ale B AMA Home

B MSJAMA B Document Delive B 10 Use This Sit
B American Medical News [| m B MW

ol ARCHIVES Home || B How to Advertise
Go

B Subscribe B What's New

Il _lournals of the AMA

Figure 2.18: Sitemap from the Journals of the AMA. Form elements make navigation more
difficult.

2.9.3 Trees and Graphs

Jam Design’s site map'® (figure 2.16) displays the pages within the site in a tree stretched
out over the shell of the spaceship. Trees and hierarchies are useful systems for organizing
information and their construction can be automated. Chen et al. presented the Cha-Cha?°
concept as an attempt to show search results in context using a tree shaped list of results
(Chen, Hearst, Hong, and Lin 1999). The user interface is shown in figure 2.19. Each leaf
node represents a relevant page in the Web site and the tree shows the shortest paths back
to a starting point, such as the home page.

An alternative approach also uses the idea of a tree combined with the idea of a fish-eye
view. The “focus+context” technique (Lamping, Roa, and Pirolli 1995) is demonstrated by
Inxight’s hyperbolic StarTree shown in figure 2.20. Nodes can be clicked and dragged towards
the centre to bring them into focus. When this happens new nodes appear at the edges of
the view.

The VisIT interface developed at UIUC shows each page as a rectangle in a grid. Links
between the rectangles indicate hyperlinks between the pages. The program acts as a meta-
search engine — requesting information from search engines, downloading each page in the
returned results, parsing the contents for link information and constructing the graph shown
in figure 2.21. For this reason, it is more bandwidth intensive than many search applications
which rely on information from a single server.

Natto is a kind of Japanese food made of soybeans. As it is very sticky, if a bean is picked
up, those nearby follow it, these cause more beans to follow, and so on. Figure 2.22 shows

'9 http://www.jamdesign.com /html/jam_site_map.html
20 http://cha-cha.berkeley.edu/

CHAPTER 2. PROBLEMS AND SOLUTIONS

Cha-Cha

Search Ballthewords =

B Cha-Cha: Contextuabzmg Intranct Search Results

Cha-Cha: & Systemn for Organizing Intranet Search

B Cha-Cha Acknowledgements

Page Summary

Jason Hong - Cha-Cha: Contextualizing
Search Results

Jason Hong - Cha-Cha: Contextualining

Berkeley CS Division Home Page

= Faculty Photo Gallery

¥ Tason Hong - Graduate School Adwice

v Tason Hong - Current Eesearch

B Jason Hong - Cha-Cha: Contextualizing Search Results

= JCE CS Alphabetical Homepage List
¥ Mike Chens Home Page
¥ [~mikechen/courses. shiml
= Cha-Cha Search
¥ Cha-Cha Zearch - Help

B Cha-Cha Search - Bugs
= Mike Chens Publications

B Cha-Cha: 4 System for Orpanizing Intranet Search

v Homepage for Eric Anderso

w Top-Lewvel Index of all my Pilot Memos
Dancing Routines

Search Results

...... Cha-Cha: Contextualizing
Search Results

We are working on Cha-
Cha, a system te place the results of a search

over a web stte into a context that represents
the structure of that site. ... Belowis a
comparison of a standard search engine layout

(see Figure 1), and a potential layout for Cha-
Cha (see Figure 2).

bty f#ererer s beeeley wihn B0/ juscmbubesearchichi-chal - (Size: 10K)

E

Figure 2.19: The Cha-Cha interface developed at Berkeley.

Site Map

Star Tree Studio

Pr J.E
| conta Mana Board
Meua [, Sress
Kund | Career
Ldsun % 1 S
: b: | Contact
Produkt ™ [
" Y b et f
Wir (ber NN \ W
- SN Inaght cat
S 4 | i 4
Contact About Inxight A /5
Zommu

‘

German Home

e Inight Smart
o -

Actualitis et \\ / 'Jf__,---"/-_r e
ctualities ' - : : —
o S \Qi . v Braduels —— InxlghtVleeT_E_'r =
Clients — = ~ inxight — — =
_ French Horme Page B
Soluions T~ rHDr_nE « CEM SDﬂvyaje -
Bt 2 1} ey
Produits e o \ Custormers
a prop Mews and Even | | N ek ey
A Partners NN e
Mewslett . { AL Ny Owerview
Resear LA .I\ \\ N Custom
o I \ Oy it
wek: o ! / Yooty Custo
Event / | I !
rreg ! {

/ Partner
MEw Parn pgpn Parn

Figure 2.20: The StarTree interface developed by Xerox and available from Inxight.

58

CHAPTER 2. PROBLEMS AND SOLUTIONS 59

& ¥isIT has completed your search =10 ﬂ

File Edit Tool Insert Preferences Help
q 8 == Search Sat
D w|@] x| e @] o)

© Search Term: |amiga

Make | Create | Back || Browser
Notes Label Link Options

|=|| searcn | more | ston

4| uwewe fretburg linu.de-~uaer -
3

[¥]|

ade on Amiga - Main Page

| [The NEW Made on Amiga is now live.
“|iseconds, but please remember to up)
;| Description: The internet’s most col

" Category: Computers > Systems > i

armigatm € a. ann.lu - | v gonmad.demon.co.ukimoai - 3K

ww.Cs.cu.edu:8001Web/Peaple!
|| Similar pages

ooy 2Miga.0rg

amigaos.de amiga.com armiga-news.de gonmad.demon.(

-t allthewed

Displaying results 1-10 of 4,016,880
amiga.de amigaefsanesic cucug.org realdreams.cz /|| 1. Amiga Corpaorate Partal

- z Corporate news and product inf|
i & more hits from: hitp:/iwww.a

[+
earch Engine Results |; Browser

E Heywords

Figure 2.21: The VisIT interface developed by UIUC.

Nattoview — a 3D graph visualization tool based on the metaphor of natto, in which nodes
in a Web graph can be dragged and moved like beans (Shiozawa, Nishiyama, and Matsushita
2001).

Cat-a-cone (Hearst and Karadi 1997) presents pages on-screen in a 3D environment. Groups
of categories are presented in a barrel-shaped list which can change and revolve whenever a
category or page is selected. The categories are stored in a complex hierarchy. The combi-
nation of circular lists and tree levels gives rise to the conical structure. The major problem
with interfaces such as these is that too much information may be obscured at any one time.

Kartoo is a meta-search engine which presents its results in an interactive graph. Figure 2.23
shows the novel, flash-based interface. Each site in the chosen results is associated with
an annotated “ball” connected via “topic” descriptions or keywords. Whenever the mouse
pointer is moved over one of the balls, the description of the corresponding site is displayed
on the left hand side. When the mouse pointer moves over a topic, the user is presented with
plus and minus symbols which alter the query and regenerate the map.

Two other systems which employ graphs for personal use are Internet Cartographer and
Mapuccino. Inventix Software’s Internet Cartographer is a personal browsing assistant that
uses a graph model to structure the display of sites previously visited by the user. Mapuccino
is a program which allows users to create small graphs based on web site content and structure.

CHAPTER 2. PROBLEMS AND SOLUTIONS

Figure 2.22: The Nattoview interface.

60

CHAPTER 2. PROBLEMS AND SOLUTIONS

amiga -service +news

{
flarme.daman ci

distributed. ami b

Figure 2.23: The Kartoo interface.

61

CHAPTER 2. PROBLEMS AND SOLUTIONS 62
2.10 Trail Recording

A trail is a sequence of pages, connected by links. The first use of the term trail in this
context occured in Bush 1945, but the concept has often been used since. When referring
to the paths that users follow, the terms “navigation path”, “click-path” or “click-trail” are
common. The trails that users follow can be extracted using data mining techniques (Borges
2000).

The idea of presenting optimal trails to the user as a means of solving the navigation problem
is also not new. The terms “navigation path”, “chain” or “guided tour” are sometimes used
in this context.

Engelbart’s NLS, discussed in section 2.2, was the first system to allow users to construct
arbitrary trails. Engelbart’s demo showed how the hierarchical structure of his shopping list
example could be moulded to create a trail for his journey home. Textnet supported linear
paths using a similar structure (Trigg and Weiser 1986).

Xanadu defines paths in the form of “suggested-threading links”. In the Xanadu model
all documents and links are referenced by tumblers — a complex tree-like numbering scheme
(Nelson 1993). Links are formed with four tumbler references — to the link’s “home” document,
the source and destination and an arbitrary type. As all links in the docuverse can be
referenced using the same tumbler scheme, a chain can be created by joining links together.
Nelson defines suggested-threading links as “chainable links which propose a pathway through
a corpus of material”.

Hammond and Allinson’s hypertext system for students made use of maps, keyword search
and guided tours. The tours also supported sub-tours called “excursions” after their “travel
holiday” metaphor (Hammond and Allinson 1988). When questioned on their usage of the
system, 91% of students made use of the guided tour facility as opposed to 74% who used the
maps and 79% who searched with keywords. Guided tours were the most popular method
for studying unfamiliar material and joint favourite for revising known material. The choice
of a guided tour mechanism has been given as one of the most influential factors in a user’s
ability to navigate hypertext effectively (Hammond and Allinson 1989b; Nielsen 1989).

The NoteCards system relied heavily on the manipulation of various types of card — each of
which were handled as first-class objects. Guided tours were supported through the use of
tabletop cards which captured the session state. Trigg defines the tabletop as “a snapshot
which records the list of cards, the shapes of their windows, their positions on the screen,
the scrolled locations (vertically and possibly horizontally) of the windows’ contents, and the
order in which to open the windows so that the original (possibly) overlapping arrangement
can be preserved” (Trigg 1988). Guided tours were also defined as cards, each of which
contained several tabletops in a path or network of paths. This network could be traversed
by the system, with the user being prompted whenever multiple destinations were possible.

Stotts and Furata 1989 describes a model for hypertext based on Petri Nets. This model allows
the possibility for authors to “specify the creation and deletion of multiple concurrent browsing
paths” which can be synchronized so that “concurrently displayed information elements do
not become unrelated to each other”.

Zellweger 1989 presents a hypertext system, called “Scripted Documents” which uses trails or

CHAPTER 2. PROBLEMS AND SOLUTIONS 63

paths as the primary linking mechanism. It allows the user to program scripts which describe
the path. Each script consists of a set of documents, a set of script entries, associating
locations with actions and a path specification, in the form of a Cedar (Swinehart, ZellWeger,
Beach, and Hagmann 1986) program.

Sillitoe et al. proposed a system for manipulating trails, complete with forks and subtrails
(Sillitoe, Rossiter, and Heather 1990). They discussed a database backed scheme for storing
and retrieving the information. This allows users to record trails and play them back.

Furuta et al. developed a system for authoring, modifying and re-using Walden’s paths —
guided tours on the Web, which could be used in a teaching environment (Furuta, Shipman
ITT, Marshall, Brenner, and Hsieh 1997).

CHAPTER 2. PROBLEMS AND SOLUTIONS 64

2.11 Trail Finding

As has been shown, the concept of presenting trails is well established in the hypertext
community, as is the idea of using the computer to extract a user’s trails using data mining
techniques. The logical extension of this is to allow the computer to predict useful trails and
present these to the user. However, there have been few attempts to apply this principle.

WebWatcher (Joachims, Mitchell, and Freitag 1995) advises users on navigation possibilities
by highlighting links as they browse. This forms a trail over time, but the link-at-a-time
approach does not allow the user to see the context initially. Joachims stated that “in many
cases only a sequence of pages and the knowledge about how they relate to each other can
satisy the user’s information need” (Joachims, Freitag, and Mitchell 1997). The navigation
engine extends this to compute and show complete sequences in advance.

The Cha-Cha system (Chen, Hearst, Hong, and Lin 1999) presents results in a similar manner
to the NavSearch interface described in chapter 6. These results are shown in context, but
the scoring is only conducted at the page level, the trails leading to the page are chosen as
the shortest paths, not those with informative content.

Mizuuchi and Tajima 1999 describes a system for finding paths to specific nodes, based upon
link-analysis and the directory structures implied by URLs. These paths are assumed to be
the paths most likely to be followed by the user and therefore contain keywords not present in
the pages themselves. The content of pages on these paths can be used to augment indexes.
Yet again, these paths are not judged on the total information content, nor are they suggested
to users.

Bernstein describes a “shallow apprentice” for link suggestion. The system “may also con-
struct hypertext paths or tours” by getting the author to “choose an interesting starting point
and ask the apprentice to construct a path through related material” (Bernstein 1990). The
tours are constructed via a best-first page finding scheme using document similarity mea-
sures. The intended audience is hypertext authors who can verify and modify the tours. In
this example, the tours are based upon IR metrics, but ignore pre-existing link structure.

Guinan and Smeaton 1992 describes a system for computing query-specific guided tours, in
a similar way to that outlined by Bernstein. The algorithm to compute the tours is based
on a simple ordering using link types and #f.idf. All relevant nodes with ¢f.idf values above
a certain fraction of the maximum value are incorporated. However, as with Bernstein’s
system, the algorithm doesn’t take advantage of user-defined links. It also relies heavily on
user-defined or system-defined link types, neither of which are applicable to the Web.

Two algorithms which appear more promising are the Best Trail algorithm and a more com-
plex reinforcement algorithm for constructing Web Probabilistic Views based on a sample-
credit-update cycle (Zin and Levene 1999). The Best Trail algorithm was enhanced and used
as the basis for this work. The current version is discussed in detail in chapter 3.

An outline sketch of the second algorithm, which generates trails in the form of Web Proba-
bilistic Views, is shown in figure 2.24. The views are weighted subgraphs in which the good
trails can be found. The algorithm represents the views in the form of a Hypertext Proba-
bilistic Grammar (HPG), G = (Vn, Vr, R, P,S), in which Vy and Vp represent sets of state
(node) and transition symbols, R represents a set of transition rules, P assigns probabilities

CHAPTER 2. PROBLEMS AND SOLUTIONS 65

to these rules and S defines a start state. The sample function, updates a sample of trails,
T. A vector of credit scores, C, are assigned in proportion to the relevance of these trails.
The probabilities controlling the grammar are then updated. The rate at which this rather
complex process operates is controlled by a parameter, 0 < a < 1. It is the cost of this lengthy
computation which makes the Web View algorithm less suitable for subsequent development
that the Best Trail algorithm.

Algorithm 1 (web_view((Vn,Vr, R, S),n,Q, a))
1. begin

2 p initialise(R);

3 repeat

4 G + <VN,VT,R, P, S);

5. T <« sample(G,n);

6 C + credit(T, Q);

7 P’ normalize(C);

8 P « update(P, P, a);

9 until the expected trail relevance converges to a fixpoint;
10. return (VyVp, R, P,S);

11. end.

Figure 2.24: Zin and Levene’s generic Web View algorithm

The Web view concept is grounded in grammar and automata theory. Finite automata are
used as models of computer power, in the study of languages and as the basis for regular
expression matchers (Hopcroft and Ullman 1979). Regular expressions play an important
part in powerful tools such as grep, sed and perl (Friedl 2002; Dougherty and Robbins 1997;
Larry Wall 2000).

A Web Graph G = (N, E) can be modelled as a hypertext automata, where the set of nodes,
N, maps onto the set of possible states, S, and the set of edges, E, maps onto the set of
state transitions, T (Borges 2000). In such an automata, a trail through the Web Graph is
described by a sentence accepted by the automata, and the set of possible trails through the
Webgraph maps to the language accepted by the automata (the set of all possible sentences
accepted by the automata). It is also possible to define a Web View as a subset of this
language, and to construct a hypertext grammar describing this language.

A Hypertext Probabilistic Automata (HPA), is the probabilistic formulation of the hypertext
automata where any link between two states, s; and so, is associated with a probability,
P(s; —> s2). In this context, the term support denotes the acceptance of trails whose initial
probabilities are greater than some value 0, confidence denotes the acceptance of trails whose
total probability is greater than a value § and a cut-point denotes the acceptance of trails
whose total probabilities are greater than 6 - § (Borges 2000).

The probabilistic automata model maps directly to the Markov chain model where the tran-
sitions are represented by a process in which the probability of a transition is based soley
upon the previous step or steps. This leads directly to the random surfer model which has
proved popular with researchers and has been used as a model for explaining the HITS and

CHAPTER 2. PROBLEMS AND SOLUTIONS 66

PageRank metrics (Kleinberg 1998; Page, Brin, Motwani, and Winograd 1998; Henzinger,
Heydon, Mitzenmacher, and Najork 1999; Fagin, Karlin, Kleinberg, Raghavan, Rajogopalan,
Rubinfield, Sudan, and Tomkins 2000; Levene and Loizou 2002).

These model allow complex reasoning about hypertext documents. For example, they can
be used in analysis to verify the structure of the document or to prove the complexity of
operations (Stotts, Furuta, and Ruiz 1992; Levene and Loizou 1999; Moreau and Hall 1998).

CHAPTER 2. PROBLEMS AND SOLUTIONS 67
2.12 Summary

The navigation problem in hypertext — the problem of helping users find their way and
stopping them from getting “Lost in Hyperspace” has been described. This is related to, yet
distinct from, the problem of resource discovery.

The information retrieval community has provided document retrieval mechanisms based on
statistical properties of the corpus and link graph. Models such as the VSM allow complex
document structures to be simplified into simple independent terms; measures such as ¢ f.idf
allow the effective selection of such documents; and practical techniques such as inverted files
allow the rapid retrieval of documents according to that selection.

The hypertext community has provided mechanisms for storing, representing and manipu-
lating trails. Similarly, these mechanisms are based upon sound mathematical models using
graph theory, Petri nets or automata. They have been widely implemented in many enviro-
ments, and proven to be popular and successful.

The Web community has contributed techniques for managing the World’s largest repository
of knowledge. The Web is composed of sites, which can be difficult to navigate. The site can
be made more navigable through the use of maps and cues suggesting relevant links to follow.

In the following chapters many of these techniques will be incorporated into an automated
system for constructing and returning trails based on properties of the corpus.

Part 11

Implementation of a Trail-Based
Navigation Engine

68

Chapter 3

The Best Trail Algorithm

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim
Because it was grassy and wanted wear;
Though as for that, the passing there
Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.
Oh, I marked the first for another day!
Yet knowing how way leads on to way
I doubted if T should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I,
I took the one less traveled by,

And that has made all the difference.

Frost 1875

69

CHAPTER 3. THE BEST TRAIL ALGORITHM 70
3.1 Introduction

This chapter describes the implementation of an enhanced version of the Best Trail algorithm
(Levene and Zin 2001). The original algorithm was developed for finding trails between
linked pages in the Web. Unfortunately, the algorithm had previously been implemented
only once and the performance of this implementation was never adequately assessed. The
code has been completely re-written and substantial changes have been made to both the
algorithm and the auxillary functions whilst maintaining the overall structure. The principle
of combined exploration and convergence operations to manipulate a navigation tree remains
but the probabilty distribution has changed to improve efficiency. The outer loops are also
merged to allow the return of a set number of trails from each starting point. The selection
functions, scoring mechanisms and trail ordering functions were never adequately defined
and have all been changed. Finally, post-computation filters and sorting methods have been
developed to remove redundant information and improve the quality of results. In order to
avoid continual references to the previous version, the revised algorithm will be presented in
full as described in Wheeldon and Levene 2003.

The Web is a massive global hypertext system in which documents or pages can be found
on almost every subject imaginable. A Web site represents a collection of pages with some
common element. The common factor may be the subject or topic of the pages, a common
author or a shared organization or community. Web sites are often associated with physical
servers, but this may not always be the case. A large Web site may be spread across servers
(e.g. sun.com, ibm.com, etc.) and a single server or cluster may host many individual Web
sites (e.g. geocities.com). The vast majority of links on the Web are between pages within
a common Web site.

The objective of the Best Trail algorithm is to quickly and efficiently identify memex-like trails
in Web-like graphs. A trail in this context consists of a series of linked pages. The algorithm
works by performing a probabilistic expansion of a set of navigation trees from chosen starting
points. The original intention was to apply this to large crawls of the Web. However, the
huge numbers of servers and required levels of support have unfortunately removed full-scale
Web search from the realms of academic research. The algorithm is better applied to the
realm of Web sites and this application will be explored in chapter 6.

A Web site is modelled as a hypertext system H having two components — a directed graph
G = (N, E), having finite sets of nodes and arcs N and E, respectively, and a scoring function
p which is a function from N to the set of non-negative real numbers. The directed graph G
defines the Web site topology and is referred to as the Web Graph; the nodes in N represent
the Web pages and the arcs in E represent hyperlinks (or simply links) between anchor and
destination nodes. The terms node, page and URL are used interchangeably. The score,
u(m) of a Web page m € N, is interpreted as a measure of how relevant m is with respect
to a given query, where the query is viewed as the goal of the navigation session. In this
interpretation y can be viewed as the scoring function of a search engine with respect to a
given query. Another interpretation of 4 is that it denotes the relevance to the user. In this
sense the hypertext system would be personalised and p would be different for distinct users.
In both interpretations of y, the user initiating a navigation session would like to maximise
the relevance (or suitability) of the trail to the query. The Best Trail algorithm attempts
to find relevant and useful trails by computing trails which score highly according to some

CHAPTER 3. THE BEST TRAIL ALGORITHM 71

function of these page scores.

Figure 3.1 shows an example Web graph, representing a complete crawl of the GraphViz Web
site!. The numbers denote unique identifiers assigned to all URLs. For example, the root of
the site, / , is assigned an ID of 4 and is shown left-of-centre. The gaps in the sequence are
due to URLs, referenced by the pages in the Web site, of pages elsewhere on the Web. Two
hubs, download.html and refs.html, link to the program executables and perl scripts and to
the papers and technical manuals respectively. The numbers in parentheses denote relevance
scores for the query “dotty”, which is the one of the main GraphViz programs — the one used
to edit directed graphs. This Web graph will be used as a running example throughout this
chapter, the remainder of which is organized as follows:

Section 3.2 discusses related algorithms for graph traversal and finding different kinds of
paths, and shows why these algorithms are not optimal for the task of finding relevant
trails.

Section 3.3 describes the Best Trail algorithm. The algorithm is a probabilistic best-first
traversal algorithm with two stages.

Section 3.4 describes auxillary functions used by the algorithm. Functions are required to
manipulate the navigation trees — selecting tips to expand and adding the new tips to
the tree.

Section 3.5 describes scoring metrics used as objective functions. Two functions, referred
to as sum distinct and weighted sum, are defined in terms of the scores of individual

pages.
Section 3.6 describes heuristics for filtering redundant information from navigation trails.

Section 3.7 describes the latest implementation of the Best Trail algorithm. All tip selection
is done via a table-based binary tree.

Section 3.8 describes the computational complexity of this implementation. The complexity
is specified entirely by the parameters of the algorithm and the characteristics of the
Web graph.

Section 3.9 shows the results of experiments into the behaviour and performance of the
algorithm.

Section 3.10 gives concluding remarks and directions for future research.

! http://www.research.att.com/sw/tools/graphviz/

/
"
1, refs.html (1.9356) 88, neatoguide.pdf (0.1744)

\

84, GN99.pdf (2.4983)

85, GI94.pdf (21.3597)

92, dottyguide.pdf (20.9269)

87, dotguide.pdf

4,/(1.8076)

=

105, shapehowto.html (0.7356)

< J

36, examples
43, gdlinks.html)—————

35, overview.html (2.4615)

Figure 3.1: An example Web topology.

17, Agraph.pdf

— 20, webdot.cgi.pl

207, dgkn-97.pdf
205, splino.tgz
96, thirdparty.zip

{

\
Qe 2 oo >

~Cas e i
G gyt ot

€ HHLAVHD

WHLIHOOTV IIVYL LSHEI HH.L

()

http://www.research.att.com/sw/tools/graphviz/refs.html
http://www.research.att.com/sw/tools/graphviz/Agraph.pdf
http://www.research.att.com/sw/tools/graphviz/GN99.pdf
http://www.research.att.com/sw/tools/graphviz/GI94.pdf
http://www.research.att.com/sw/tools/graphviz/dotguide.pdf
http://www.research.att.com/sw/tools/graphviz/neatoguide.pdf
http://www.research.att.com/sw/tools/graphviz/leftyguide.pdf
http://www.research.att.com/sw/tools/graphviz/dottyguide.pdf
http://www.research.att.com/sw/tools/graphviz/libguide.pdf
http://www.research.att.com/sw/tools/graphviz/TSE93.pdf
http://www.research.att.com/sw/tools/graphviz/EN96.pdf
http://www.research.att.com/sw/tools/graphviz/dynadag.pdf
http://www.research.att.com/sw/tools/graphviz/shapehowto.html
http://www.research.att.com/sw/tools/graphviz/layers.html
http://www.research.att.com/sw/tools/graphviz/isofonts.txt
http://www.research.att.com/sw/tools/graphviz/whatsnew.html
http://www.research.att.com/sw/tools/graphviz/download.html
http://www.research.att.com/sw/tools/graphviz/webdot.cgi.pl
http://www.research.att.com/sw/tools/graphviz/dist/GraphvizTool.CAB
http://www.research.att.com/sw/tools/graphviz/doc/graphviztool.txt
http://www.research.att.com/sw/tools/graphviz/license/faq.html
http://www.research.att.com/sw/tools/graphviz/license/binary.html
http://www.research.att.com/sw/tools/graphviz/packages/fademo.tgz
http://www.research.att.com/sw/tools/graphviz/gtools.html
http://www.research.att.com/sw/tools/graphviz/packages/spline-o-matic/
http://www.research.att.com/sw/tools/graphviz/doc/gvizfaq.html
http://www.research.att.com/sw/tools/graphviz/doc/char.html
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/overview.html
http://www.research.att.com/sw/tools/graphviz/examples
http://www.research.att.com/sw/tools/graphviz/webapps.html
http://www.research.att.com/sw/tools/graphviz/gdlinks.html
http://www.research.att.com/sw/tools/graphviz/dist/graphviz_1_9_cygwin_fix.ZIP
http://www.research.att.com/sw/tools/graphviz/dist/thirdparty.zip
http://www.research.att.com/sw/tools/graphviz/dist/gviz17c.sol.i386.tgz
http://www.research.att.com/sw/tools/graphviz/dist/gviz17c.hp10.pa.tgz
http://www.research.att.com/sw/tools/graphviz/dist/gviz17c.osf.alpha.tgz
http://www.research.att.com/sw/tools/graphviz/dist/gviz17c.sgi.mips3.tgz
http://www.research.att.com/sw/tools/graphviz/extras/webdot.pl
http://www.research.att.com/sw/tools/graphviz/extras/graphviz-dot-mode.el
http://www.research.att.com/sw/tools/graphviz/contrib/sql2dot/index.html
http://www.research.att.com/sw/tools/graphviz/extras/pl_from_gprof.pl
http://www.research.att.com/sw/tools/graphviz/extras/dot_from_pl.pl
http://www.research.att.com/sw/tools/graphviz/gvproj.zip
http://www.research.att.com/sw/tools/graphviz/libexpr.tgz
http://www.research.att.com/sw/tools/graphviz/gviz15.tgz
http://www.research.att.com/sw/tools/graphviz/gtools1.01.tgz
http://www.research.att.com/sw/tools/graphviz/ivlinks.html
http://www.research.att.com/sw/tools/graphviz/packages/spline-o-matic/splino.tgz
http://www.research.att.com/sw/tools/graphviz/packages/spline-o-matic/dgkn-97.pdf
http://www.research.att.com/sw/tools/graphviz/contrib/sql2dot/sql2dot.jar

CHAPTER 3. THE BEST TRAIL ALGORITHM 73

3.2 Graph Traversal and Path Finding

Many graph traversal and path-finding algorithms have been developed over the last 50 years
and it is not unreasonable to question the development of a new one. The effects of a few of
them will be considered:

Depth-first search (DFS) is unsuitable for trail finding as it may tend towards “black-holes”
from which there is no escape. It is considered unsuitable for crawling for similar reasons.

Breadth-first search (BFS) is non-viable for anything other than very short trails, due to
the exponential growth of the tree.

Best-first search is possible but will struggle in situations where the best pages are separated
by content which is less relevant — exactly the situations where automated navigation
is most needed! It should also be noted that a best-first search is a degenerate case of
the Best Trail algorithm. Even a simple implementation of a best-first algorithm will
require a priority queuing system similar to that used by the Best Trail, so there is little
saving in complexity.

Dijkstra’s shortest path algorithm is designed to find exact matches for short paths. The
algorithm is of too high a complexity, O(N?3), to be suitable for real time use in Web
graphs. In addition the shortest trail may not always be the best and an algorithm such
as Dijkstra’s is difficult to adapt to arbitrary functions.

Elastic Net methods and similar algorithms (R.Durbin and Willshaw 1987) are useful for
finding close-to-optimal solutions to the Travelling Salesman Problem (TSP). However,
these algorithms often make simplifying assumptions concerning the instance of TSP.
Some common assumptions which are that the graph represents a real-world terrain,
that the distance from point a to point b is always less than the sum of the distances
between from points a and ¢ and point ¢ and b for any a, b and ¢ or that the distance
from a to b is equal to the distance from b to a. These assumptions do not always hold
in the Web environment.

Ant Colony optimization is another approach that has been used effectively for computing
solutions to TSP (Dorigo, Maniezzo, and Colorni 1996). Each “ant” is an agent which
uses a greedy heuristic to follow a trail based upon the weight of links and the presence
of a “pheromone”. This pheromone is laid by ants following a path, based upon the
length of the final result. Our own experiments have provided anecdotal evidence that
the Best Trail algorithm out-performs the ant colony optimization approach for Web
site trail finding, although the ant colony system appears to out-perform the Best Trail
in finding solutions to TSP.

Fractal Traversal is a technique designed for enumerating values in cryptographic systems
(Jakobsson 2002). The annoted, acyclic graphs and other data structures, such as
Merkel trees, over which fractal traversal has proved successful do not easily map to
Web graphs and therefore the technique is somewhat unsuitable.

CHAPTER 3. THE BEST TRAIL ALGORITHM 74

What is required is an algorithm that can quickly return solutions, yet will be able to find
relevant documents beyond less relevant ones. The Best Trail algorithm performs well in this

regard.

CHAPTER 3. THE BEST TRAIL ALGORITHM 75

3.3 The Best Trail Algorithm

The pseudo-code of the algorithm is shown as algorithm 2 (figure 3.2). It takes, as input, a
set of starting URLs, S, and a parameter, M > 1, which specifies the number of repetitions of
the algorithm for each input URL. When the algorithm terminates it outputs a set of trails,
B. For each URL in §, there will be M trails in B. Each trail is the highest ranking trail
contained within the navigation tree expanded from a single starting node. Manipulating this
set has a filtering effect on the set of starting points, reducing the rank of nodes which are
isolated from other relevant documents and from which navigation is problematic. Returning
trails from separate trees also has the effect of removing highly similar trails before further
filtering is required.

Algorithm 2 (Best_Trail(S, M))

1. begin

2 foreach u € S

3 for i =0to M do

4 D + {u};

5. for j = 0 to Iegpiore do
6 t + select(D);

7 D « expand(D,1);

8 end for

9. for j = 0 to Iconverge do
10. t < select(D,df,3);
11. D + expand(D,t);
12. end for

13. B < B U {best(D)}

14. end for

15. end foreach
16. return B
17. end.

Figure 3.2: The Best Trail algorithm.

Starting from each node in S, the algorithm follows links from anchor to destination according
to the topology of the Web site, building a set of navigation trees. A navigation tree is a finite
subtree of the possibly infinite tree which could be generated by traversing through G, the
root of which is a member of the set of starting points. At each stage of the traversal, one of
the tips (the leaf nodes of the navigation tree) is chosen for ezpansion. The destination node
of each outlink whose source is represented by the chosen tip is assigned a new tip which is
added to the navigation tree, along with a computed trail score. Previously visited nodes in
the Web graph will result in distinct nodes in the navigation tree, with identical page scores
but different trail scores.

Figure 3.3 shows an example navigation tree based on the Web topology shown in figure 3.1.
Each node is annotated with a unique tip number, and the URLid and URL shown previously.
Red ellipses denote candidate tips for expansion. The tip numbers are assigned in sequence

CHAPTER 3. THE BEST TRAIL ALGORITHM 76

during the iteration of the algorithm. In this example, the tips numbered 1, 3, 9, 5 and 24
were expanded.

The algorithm has a main outer loop which computes the best trail for each URL. The second
loop recomputes the Best Trail M times. As the tip selection is probabilistic, the same results
may not occur for each navigation tree. The two innermost loops comprise the exploration
and convergence stages of the algorithm, both of which expand the navigation tree from which
the Best Trail is selected by the best() function. The number of iterations in the exploration
phase is set by Iczpiore, Whilst the number of iterations in the convergence phase is set by

Icom}erge .

6, 36, examples
7, 42, webapps.html
8, 43, gdlinks.html

13, 17, Agraph.pdf
14, 84, GN99.pdf
15, 85, GI194.pdf

16, 87, dotguide.pdf

17, 88, neatoguide.pdf

18, 90, leftyguide.pdf

19, 92, dottyguide.pdf

@\ 20, 98, libguide.pdf

),\ 21, 101, TSE93.pdf

[' 22, 103, EN96.pdf

' 23, 104, dynadag.pdf
24, 105, shapehowto.html

25, 108, layers.html

™~ 26, 110, isofonts.txt

Figure 3.3: An example navigation tree.

28, 5, download.html
29, 87, dotguide.pdf

WHLIHOOTV TIVH.L LSHd HHL & HHLdVHO

L1

http://www.research.att.com/sw/tools/graphviz/refs.html
http://www.research.att.com/sw/tools/graphviz/Agraph.pdf
http://www.research.att.com/sw/tools/graphviz/GN99.pdf
http://www.research.att.com/sw/tools/graphviz/GI94.pdf
http://www.research.att.com/sw/tools/graphviz/dotguide.pdf
http://www.research.att.com/sw/tools/graphviz/neatoguide.pdf
http://www.research.att.com/sw/tools/graphviz/leftyguide.pdf
http://www.research.att.com/sw/tools/graphviz/dottyguide.pdf
http://www.research.att.com/sw/tools/graphviz/libguide.pdf
http://www.research.att.com/sw/tools/graphviz/TSE93.pdf
http://www.research.att.com/sw/tools/graphviz/EN96.pdf
http://www.research.att.com/sw/tools/graphviz/dynadag.pdf
http://www.research.att.com/sw/tools/graphviz/shapehowto.html
http://www.research.att.com/sw/tools/graphviz/layers.html
http://www.research.att.com/sw/tools/graphviz/isofonts.txt
http://www.research.att.com/sw/tools/graphviz/refs.html
http://www.research.att.com/sw/tools/graphviz/refs.html
http://www.research.att.com/sw/tools/graphviz/doc/gvizfaq.html
http://www.research.att.com/sw/tools/graphviz/webdot.cgi.pl
http://www.research.att.com/sw/tools/graphviz/doc/char.html
http://www.research.att.com/sw/tools/graphviz/shapehowto.html
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/download.html
http://www.research.att.com/sw/tools/graphviz/overview.html
http://www.research.att.com/sw/tools/graphviz/examples
http://www.research.att.com/sw/tools/graphviz/webapps.html
http://www.research.att.com/sw/tools/graphviz/gdlinks.html
http://www.research.att.com/sw/tools/graphviz/download.html
http://www.research.att.com/sw/tools/graphviz/dotguide.pdf

CHAPTER 3. THE BEST TRAIL ALGORITHM 78
3.4 Auxillary Functions

Definitions of the auxiliary functions and parameters used in the Best Trail algorithm will
now be expanded on:

Ioypiore is the number of iterations during the exploration stage of the algorithm. Iozpore > 0

I.onverge is the number of iterations during the convergence stage of the algorithm. I.ppyperge >

df is a discrimination factor — a parameter, in the range [0, 1], which allows us to discriminate
between “good” trails and “bad” trails by reducing the influence of trails which perform
badly. Thus during the convergence stage “better” trails get assigned exponentially
higher probability. Setting df equal to one would imply a uniform random selection,
whilst as df tends towards zero, the behaviour of the algorithm tends towards that of
a best-first approach. The degenerate case of the Best Trail algorithm where df = 0,
Tezpore = 0 and Ieoppergeso0 is equivalent to the best-first algorithm.

p(tx) represents the score of trail ¢5. This is defined as a function of the score of the constituent
nodes where the scores for a node n is given by p(n). Possible functions are discussed
in section 3.5.

7(t) denotes the rank of a tip, ¢, (or of the trail leading to it). This is determined by the
tip’s position within the ordered set of candidate tips. The position of ¢ is determined
by comparing nodes based upon

1. The number of query terms matched by the trail ending at ¢.
2. The maximum number of query terms matched by any single page in the trail.

3. The trail score, p(tk)-

In the current implementation, no two trails may share the same rank even if they
are equally matched with regard to each of these measures. This allows the select()
operation to be performed in O(log N) time, as described in section 3.8.

It has been argued that the number of keywords in a query that are matched by a
document should take precedence over other scoring mechanisms, and that the terms
for a query may be spread across several pages (Anh and Moffat 2002; Li, Candan,
Vu, and Agrawal 2001; Joachims, Freitag, and Mitchell 1997). Ranking the trails first
upon the number of keywords that are matched, incorporates both of these ideas and
improves relevance.

expand(D;,t) returns a navigation tree resulting from the expansion of D; with tip node t.
That is, the navigation tree resulting from adding new tip nodes for each outlink from
the node in the Web graph which is represented by .

select(D;, a, 7) is a function which selects a candidate tip to expand. « is either 1 or df and j
denotes either an exploration or convergence step and D; is the navigation tree. The tip
is chosen at random according to the probability distribution function P. During the
exploration phase, the select() function selects a tip to expand where the probability of
a tip ¢ being selected is given by

CHAPTER 3. THE BEST TRAIL ALGORITHM 79

o p)
Put) = S o

making the probability of any node being selected directly proportional to its score.
During the convergence phase, the probability of a node ¢ being selected is dependant
only on its relative rank, 7(¢), in the ordered set of candidate tips, and is given by

df T3

P(Diat,dfaj) = W

where j is the number of completed convergence iterations. These distributions allow
the select() function to be implemented efficiently.

best(D;) returns the highest ranked trail induced by the set of tip nodes of D;.

CHAPTER 3. THE BEST TRAIL ALGORITHM 80

3.5 Scoring Trails

The relevance or score of a trail, T' = Uy, Us, ..., U,, is defined by a function, p, of the scores
of the individual Web pages of the trail. A function is needed which will encourage non-
trivial trails whilst discouraging redundant nodes. The following functions perform well in
this regard:

Discounted Sum The sum of the discounted scores of the URLs in the trail, where the
discounted score of U;, the URL in the ¢th position in the trail, is the score of U; with
respect to the query multiplied by -y raised to the power of 1 — 1, where 0 < v < 1 is the
discount factor. This encourages trails in which the most relevant content appears early
and fits well with observations about the length of trails which users naturally follow
(Silverstein, Henzinger, Marais, and Moricz 1999). The discounted score of T is given
by

p(T) = discount(T) = Z w(U;) L.

Weighted Sum of discounted scores, where the additional weighting is achieved by dis-
counting each URL according to its previous number of occurrences within the trail.
The weighted score of T is given by

n

p(T) = weighted(T) = > u(U;) v~ 60
i=1

where c(i) = [{Uj|7 < i AU; = U;}| is the number of occurrences of an equivalent node
in an earlier position in the trail and where 0 < § < 1 is a second discounting factor,
typically with § < . This second discounting function reduces the importance of nodes
with equal content. Although ¢ = j implies U; = Uj;, U; = U; does not imply 7 = j.
Two distinct nodes may be considered equal if they have equal content, determined
in advance using checksums and by comparing likely candidates. This definition of
node equality can easily be extended to refer to near-duplicate documents (Broder
2000; Shivakumar and Garcia-Molina 1999). Using the weighted sum function with
parameters v = 0.75,6 = 0.05, the score of the trail to tip 15 in figure 3.3 can be
calculated as 16.6.

Sum Distinct The sum of the scores of the distinct URLSs in the trail divided by the number
of pages in the trail plus some constant (e.g. 1). This function penalises the trail when a
URL is visited more than once. It also penalises trivial singleton trails and encourages
trails where every node makes a significant contribution to the score. Removing the
constant factor leads the objective function to return a maximal score in the case of
a singleton node where that node is the highest scoring page in the corpus. Scoring
functions such as the average score or maximum score of a node on a trail also suffer
from this problem. Using the sum distinct function with a constant factor of 1, the
score of the trail to tip 15 in figure 3.3 is 6.27. Formally, this function is given as

1 n
T) = Disti T)=—— irst(1
p(T) = sumDistinct(T) e ; first(i)

CHAPTER 3. THE BEST TRAIL ALGORITHM 81

where € is a constant and first(:) returns 1 if and only if ¢(i) = 0 and returns 0
otherwise.

Figure 3.4 shows how the trails in the navigation tree would be scored after two expansion
(of tips 1 and 3) using the parameters e = 1, v = 0.75 and § = 0.05. The examples shown
in this paper are constructed by computing two trails from each starting point — one scored
using the sum distinct metric and one using the weighted sum. High scores are associated
with relatively short trails when using sum distinct. This forces the most relevant pages to
the forefront of the display. The weighted sum encourages longer trails. Merging trails with
common roots gives a good ordering to the display, as can be seen in figure 3.5, which shows
the interface discussed in section 6.2.

Tip | Weighted Sum | Sum Distinct (+n)
1 1.8076 0.9038
2 3.2593 1.2477
3 6.5056 2.6905
4 1.8076 0.6025
5 3.6534 1.4230
6 1.8076 0.6025
7 1.8076 0.6025
8 1.8076 0.6025
9 7.5940 2.5018
10 6.5056 2.0179
11 6.5056 2.0179
12 6.9194 2.2018

Figure 3.4: Table showing trail scores using Weighted Sum and Sum Distinct.

CHAPTER 3. THE BEST TRAIL ALGORITHM

Navigat]onZone h:‘ao\:;ear(h | TrailSearch | VisualSearch oz

Trail>> dottyguide.pdf

B-7-L-|t]®-] 8= - @0 HEEEEEEEY EN R
-& dottyguide.pdf WQ BB
-iGraphv\z FaQ 20020919 yi
Graphwiz =
GI94.pf E At
ﬁ Graphuiz. g
T%@?:;EVEAQ 20020s18 7 destty is o graph editor for the X Window System. It may be mun as a standalone odinr, or as
-0 G104, el 2 a fromt end for applications that use graphs. It can ecorrol multiple windows viewing different
s graphs,
GrgE:;:wz E dotty is written on wop of dot and Befly, lfty i a general-purpose programmable editor for
GI94.pdf - techmical pictures, It has an interpretive progranmming language sinilar to AWK and C, The user
A el interfoe and graph editing operations of dotty are writben as deffy funetons. Programmer-defined
'}t‘? G thiz £ graph operations may be loaded as well, Graph layouts are made by dot. which Tuns as a separate
G?aphwz FaQ 20020019 g process that cormmunicates with defty through pipes,
Graphwiz] The serem dump below shows a snapshot of a typieal dotiy session,
L0 G194 pdf . e
Graphwiz
Graphviz i
GMI9 el i 4
% Graphwiz e ¢
Graphviz FAQ 20020919 | e
Graphviz 3;:
GIg4pdf b
Graphuiz ";’
-0 GI9dpdf 5
Graphiviz i i
Graphwviz dowrload i ¢
Sgl2Dot i o
-8 Graphwiz : ‘?
Graphviz FAQ 20020919 g
Graphwiz @
Gl pdf

-0 leftyguide. pdf
0 dynadag.pdf

Gl fesfas

Fe—e—0

MavigationZone @ 2000-2002

v Safrwes TeAna ey

&) W A zotaz P M B5zim O1F= 8 Al

Figure 3.5: Results for the query “dotty” on the topology shown in figure 3.1.

CHAPTER 3. THE BEST TRAIL ALGORITHM 83
3.6 Sorting and Filtering

The set of trails returned by algorithm 2 (figure 3.2) is unsorted and may contain redundant
information. To sort the trails would appear to be trivial — the same rules of sorting by
the number of keywords matched and then by the trail score are applied. However, there is
more than one mechanism for scoring trails, and trail scores can be computed in different
navigation trees using different functions. The resulting trails can be sorted using a set of
scoring functions, F', by specifying that a trail, 77 should be ranked higher than a trail 75 if :

) f(1) >3 f(Ty)

fer T+ [(T2) ~ iz F(Th) + (1)

Results can be improved by filtering — removing redundant trails and redundant sections
within trails. To achieve this, a precise definition of a redundant trail is needed. For example,
a trail 7" might be said to be redundant if all the pages in 7" were contained in higher scoring
trails, but this definition would ignore the importance of the link structure in showing context.
Alternatively, only trails which are strict subtrails of previous trails might be removed, but
this would leave too much redundant information. A compromise is reached by saying that a
trail 77 subsumes a trail T5 if and only if all the pages in T, are contained in T;. A trail, ¢;
is removed from a result set, r if and only if there exists a trail to € r such that {5 subsumes

t1 and p(t2) > p(t1).

Within a trail T, a page, t; is considered to be redundant if and only if the page can be
removed whilst still leaving a valid trail through the Web site topology (i.e. if ¢; is the last
node of the trail or (¢;_1,%+1) € E and the information contained on page ¢ is either not
relevant or contained in a previous page (i.e. if p(t) = 0 or 3j t; = ¢; A j < 4). This typically
removes trivial reorderings and irrelevant content which may appear at the end of trails.

Whilst the proposed definition seems intuitive, it is unclear precisely what the effect of these
operations are likely to be on the computed trail relevance scores. Experiments on the UCLCS
web site crawl have been performed which show that on average a 22% improvement (increase
in average trail score) can be achieved through filtering when scores are computed using
the weighted sum. When scores are computed using this sum distinct metric, the average
improvement remains high, at 14.8%. Figure 3.6 shows the effectiveness of the filtration
in improving the trail scores. The curves show improvement over 26 queries taken from the
UCLCS web site logs. They show that in 85% of cases, filtering produced higher scoring trails,
regardless of scoring function. Figure 3.7 shows that the improvement achieved with respect
to the weighted sum is strongly correlated with the improvement achieved with respect to
the sum distinct score. Other experiments have shown that this effect is not restricted to the
UCLCS web site, but appears to be a general rule.

CHAPTER 3. THE BEST TRAIL ALGORITHM

Improvement

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

-10.00%

-20.00%

-30.00%

Figure 3.6:

* WS-Avg
m SU-Avg

25

Reverse Rank

Improvements in average trail score induced by filtering.

84

CHAPTER 3. THE BEST TRAIL ALGORITHM 85

50-00

y = 0.6977x - 0.0094
R?=0.8416

40-00%

30-00%

X3

20002 * o

10-00%

3

: : 0-00%

-30.00% -20.00% -10.00%

00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%

Improvement in Sum Unique Score

. 10.00°

YaWaYary

0-009

Improvement in Weighted Sum Score

Figure 3.7: Correlation between the increase in trail scores given by the Weighted Sum and
the increase shown using Sum Unique.

CHAPTER 3. THE BEST TRAIL ALGORITHM 86
3.7 Implementation

Each node, page or URL is assigned a unique ID. IDs are 32-bit signed integers assigned in
sequence (from 1) to each URL such that any two identical URLs will have an identical ID. The
mapping between URLs and IDs is performed using Berkeley DB B-trees backed with large
memory caches (Sleepycat Software 2001). Each page is associated with a relevance score,
determined using tf.idf measures although they may be computed using any information
retrieval metric (Salton and Buckley 1998; Baeza-Yates and Ribeiro-Neto 1999). Given a set
of relevances and a graph in this form, the trails are computed by running the traversal stages
in separate threads for each starting point.

There are many ways to access relevance data in constant time. For small webcases, the
simplest solution of a sparsely populated array performs well. For larger webcases, hashtable
lookups can be used which increase lookup time, but reduce memory overhead. The graph
is stored using these identifiers in an approach which is almost identical to that used in
the Link1 database presented in Randall, Stata, Wickremesinghe, and Wiener 2002. The
same optimizations and trade-offs between memory usage and speed can be applied here.
Alternative strategies have been presented for returning sets of inlinks and outlinks from much
larger graphs, with appropriate space-time trade-offs (Bharat, Broder, Henzinger, Kumar,
and Venkatasubramanian 1998; Randall, Stata, Wickremesinghe, and Wiener 2002; Boldi
and Vigna 2003).

At each step of the exploration and convergence processes, a tip must be selected based upon
the probability distributions described in section 3.3. These distributions have been carefully
chosen to allow the use of binary trees for storing trail score information. Figure 3.8 shows
such a tree, based upon the first 2 expansions of the navigation tree shown in figure 3.3 using
the weighted sum scores shown in figure 3.4.

This is efficiently implemented using arrays to form a table describing the tip selection tree at
each stage. This reduces the object creation overhead which is a known issue in Java (Shirazi
2000). Associated with each tip is the sum of all relevances for all descendants, denoted
as the subscore, and the total number of descendants which are referred to as the subcount.
Figure 3.9 shows the table representing the tree in figure 3.8.

When selecting a tip to expand, a random number between 0 and z is selected where either
z is the subscore or

c—1
x = Z df T(te)ik
k=0

where ¢ is the subcount. This can be computed in constant time by applying the known
result for the sum of a geometric series?. At each step in the subsequent traversal, this
process is repeated for the nodes to the left and right of the current node, adjusting z and y
appropriately. Thus, the interval in which the selected value lies can be chosen and a direction
selected. Once completed a single tip will remain, which is then expanded. For example, in an
exploration iteration, the process would start with the selection of a random number between
0 and 49.9809. If a number greater than 42.7505 was chosen (49.9809-7.2304 = 42.7505), the

process would proceed to the right. If a number less than 40.9809 was chosen, the process

2 vk = a®(1—aq¥—otl)
k=z - (1—a)

CHAPTER 3. THE BEST TRAIL ALGORITHM

1, 1.8076
2,3.2593 4,1.8076
/ /
3, 6.5056 6, 1.8076
/ |
9,7.5940 5,3.6534 7,1.8076
/
12, 6.9194 10, 6.5056 8, 1.8076
A
11, 6.5056

87

Figure 3.8: Tree of Tips for the navigation tree shown in figure 3.3. The table representing
this tree is shown in figure 3.9.

CHAPTER 3. THE BEST TRAIL ALGORITHM

Tip | Weighted Sum | Left | Right | SubScore | SubCount
1 1.8076 2 4 49.9809 12
2 3.2593 3 40.9429 7
3 6.5056 9 5 37.6836 6
4 1.8076 6 7.2304 4
5 3.6534 10 16.6646 3
6 1.8076 7 5.4228 3
7 1.8076 8 3.6152 2
8 1.8076 1.8076 1
9 7.5940 12 14.5134 2
10 6.5056 11 13.0112 2
11 6.5056 6.5056 1
12 6.9194 6.9194 1

Figure 3.9: Table showing candidate tips for expansion. SubScore is the sum of the scores for

88

the current node and all descendants and SubCount is the number of active nodes reachable
from that node. It should be noted that the nodes in this tree represent tips and should not
be confused with either the nodes of the graph or the navigation tree produced by the Best

Trail.

would proceed to the left.

CHAPTER 3. THE BEST TRAIL ALGORITHM 89
3.8 Complexity

The previous section showed how the step select(D;,df,j) could be implemented to run in
time O(log(n)) where n is the number of candidate tips. The function best() has the same
time complexity, but is slightly simpler in that each iteration is to the left of the current node.

Hence, the worst case complexity of algorithm 2 (figure 3.2) using this implementation can
be given as O(K M I?3?) where I = Iypiore + Iconverge and B is the maximal outdgree of any
link in F. This can be broken down as follows:

18 as the worst-case insertion time for a tip. This factor emanates from the fact that the
tree of tips may become a linked list if all new tips are added to the same part of the
tree. This might occur in the simple case of nodes having identical scores, so these
scores are biased using tiny random numbers to adjust the rank. The magnitude of
these adjustments means that they affect only the speed of the operation, not the end
results.

[representing the number of potential tips which may be added to the candidate set at each
iteration. This number would always be added on a fully connected graph, but graphs
based upon Web data are very sparse and this will never occur in practice.

KMI as the maximum number of iterations the Best Trail may take to find the given trails.

In practice the tree of tips is unlikely to be skewed to such a degree. Nor is the graph likely
to be fully-connected. However, if the average-case complexity is estimated by substituting
the average outdegree, the results are still inaccurate. Using the weighted average outdegree
better models the expansion of the navigation tree during the exploration and convergence
phases.

The weighted outdegree, W, of a node, n, is defined as the product of the number of outlinks

(n,z) from that node and the proportion of links in the graph which point to that node
In.y€E|

B The weighted average outdegree for a graph G =< N, E > can thus be calculated as:

w(N,) = 12921 @.9) l%fi/\ (y,2) € B}|

The difference between these values and the average outdegree can be seen in figure 3.10,
which shows the average outdegree and weighted average outdegree, for the webgraphs of
eight corpora. It is assumed that all links are as likely to be followed as any others, given a
sufficient number of queries. It should be noted that, when expanding a navigation tree, the
number of potential trails to a depth of d is roughly equal to Ele w'. where w denotes the
weighted average outdegree of a graph.

The average case complexity can now be given as O(K M IS log(If3)) where f is the weighted
average outdegree. Using binary trees the average-case complexity of the expand operation
is O(Blog BI) since there are, on average, [elements to be added to the list of candidate tips
and the complexity of operation to insert these new candidates is equal to that of the select
function — O(log SI).

CHAPTER 3. THE BEST TRAIL ALGORITHM

Webcase Nodes Pages Links Average | Average Weighted

Outdegree Outdegree
Sleepycat 2 939 1 106 11 820 10.7 29.3
SCSIS 6 868 2 448 15 055 6.1 5.1
UCL 754 322 201 900 | 2 593 912 12.9 24.2
UCL-CS 186 239 37 957 748 734 19.8 66.1
Intel 311 841 128 890 | 10 776 299 25.0 297.6
Birkbeck 301 575 64 593 781 514 12.2 13.1
TREC 7 618 783 | 1 433 848 | 20 981 549 14.8 9.6
DTI 19 919 6 093 79 263 13.0 18.7
JDK 1.4 48 923 8 114 360 458 44.4 119.5

90

Figure 3.10: Properties of the test corpora. There are more nodes than pages in the graphs,
as many of the pages refer to other pages not in the corpus.

3.9 Performance Evaluation

Numerous experiments have been conducted to test the behaviour of the algorithm and ex-
plore the effect of the various parameters which control it. Eight corpora have been used
during these experiments. They are a crawl of Sleepycat software’s site, at sleepycat.com;
a crawl of the School of Computer Science and Information Systems (SCSIS) website, at
www.dcs.bbk.ac.uk; a crawl of the main site of Birkbeck University of London, covering all
domains under bbk.ac.uk; a crawl of the main Web site of University College London (UCL),
at www.ucl.ac.uk; a crawl of the UCL Computer Science (UCL-CS) department’s site at
www.cs.ucl.ac.uk; a crawl of Intel’s site, intel.com; a crawl of the Web site of the Department
of Trade and Industry (DTI), at www.dti.gov.uk; a corpus generated from the files of the
TREC WT10g WebTrack data set (Bailey, Craswell, and Hawking 2001); and the AutoDoc
webcase generated from the Javadocs of the Java Development Kit (JDK) version 1.4, which
is discussed in greater detail in chapter 8. Figure 3.10 gives details of the corpora, which were
chosen to provide a mix of academic, technical, commercial and government sites. Queries
were selected from various query logs. The examples shown use queries chosen to highlight
the effects which occur in general for those queries with non-trivial links between relevant

pages.

Behaviour of the algorithm is controlled by the parameters df , Iogpiores Lconverge, M and the
set of starting points {Up, U1, ...,Uk}. As would be expected, increasing the value of either
of the parameters Iezpiore OF Iconverge Produces higher scoring trails on average. Figure 3.11
shows the influence of increasing values of I, piore On the score of the trail using the query
“Swing” on the AutoDoc (JDK1.4) webcase, whilst figure 3.12 shows the effect of increasing
I onverge under the same conditions. Unsuprisingly, increasing Iconverge finds the local limit of
the trail score faster than increasing Iczpiore, as shown by the sharp rise at the very start of the
curve. Perhaps more suprising is the behaviour when altering the ratio between I, pjor. and
Ionverge- Increasing Iogpiore Whilst decreasing Ionyerge increases the scores of the resulting
trails if the relevance is measured using sum distinct but decreases the trail score when
calculated using the weighted sum (figures 3.13 and 3.14). The balance between the values
Ioypiore and Iconyerge can be tuned to reflect the importance of the two metrics, but a more

CHAPTER 3. THE BEST TRAIL ALGORITHM

consistent behaviour would have been expected.

Relevance (Weighted Sum)

920

[
80 . (1 o

70

o)
o

@
=]

IS
o

w
=)

20

91

[] _y Wy
* *
] L AR AN u * o0
*» g mEmee] =" ™ u

10 YW A VY W6 B B0 ITEG HO 6P WL Eay W . B W He I\ geme

u u LI 2 * * > u
Al
ol : : : : :
0 20 40 60 80 100 120
lexpand
Figure 3.11: Increasing the number of exploration iterations increases the scores of the

returned trails. The algorithm slowly tends to a limit, whilst exploring the solution space.
Blue, purple and yellow trend lines show the pattern for 1, 5 and 20 repetitions respectively.

Increasing the value of M (the number of repetitions) is less effective, as repeated exploration
from the same node causes many of the expansions to be duplicated in other trees. The multi-
threaded environment can be used more effectively by expanding from a greater number of
starting points, as shown in figure 3.15.

CHAPTER 3. THE BEST TRAIL ALGORITHM

90

80 o m ~ e ':U

70

[o2]
o

Relevance (Weighted Sum)
H [4))
o o
\
[

W
o
L

20 A] .

0 5 10 15 20 25
Iconverge

Figure 3.12:

30

35

40

45

92

Increasing the number of convergence iterations increases the scores of the

returned trails. The algorithm quickly tends to a limit. Blue, purple and yellow trend lines

show the pattern for 1, 5 and 20 repetitions respectively.

CHAPTER 3. THE BEST TRAIL ALGORITHM 93

255

25 4 * *

245

>
»

Relevance (Sum Unique / Length+k)

225 T T T T T
0 20 40 60 80 100 120
lexpand

Figure 3.13: Increasing Io;pand, Whilst decreasing Iconyerge increases the resultant trail scores
when calculated using sum distinct. The graph shows values for 0 < I.zpjore < 100 and
Ionverge = 100 = Iegpiore- A moving average trend line is shown to highlight the effect.

CHAPTER 3. THE BEST TRAIL ALGORITHM 94

830

820 - .

810

800 -

790

Relevance (Weighted Sum)

780 -

770

760 T T T
0 20 40 60 80 100 120
lexpand

Figure 3.14: Increasing Io;pand, Whilst decreasing Ioonyerge decreases the resultant trail scores
when calculated using the weighted sum. The graph shows values for 0 < I.zpjore < 100 and

Ionverge = 100 = Iegpiore- A moving average trend line is shown to highlight the effect.

CHAPTER 3. THE BEST TRAIL ALGORITHM

95

160
*
158 -
*e
*
* >
*
156 * . MR
* * .
. ¢ . * ¢ . . .
- * . * . . -
*
E 154 - . g —2* ~—
@ A4 o /
g ¢ — e . * o
£ e
=) / . . - N
2 152 * N\ . - .
° . TN . . * o*
’6 *
] .
—_ *
F 150 . . .
= .
. .
148 .
. .
146 1—
144 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90
Starting Points
Figure 3.15: Increasing the number of starting points increases the score for trails, by

allowing a greater number of opportunities for discovery. Trail sets are truncated to the same
size. Moving average and linear trend lines are shown to highlight the effect.

CHAPTER 3. THE BEST TRAIL ALGORITHM 96

3.10 Concluding Remarks and Future Work

This chapter has presented an algorithm for finding trails across the graph of linked pages in
a Web site. Inspired by Bush’s memex, these trails provide a structure to the returned results
and provide users with contextual information not provided by traditional search facilities.
The following chapter will show how link-analysis can be used to select starting points which
lead to higher-scoring trails.

It is also possible to use the Best Trail algorithm to solve optimization problems such as TSP,
or closely related problems such as the Hamiltonian Path Problem (HPP). Experiments have
been performed to evaluate the effectiveness of using the Best Trail algorithm for solving
TSP. Trails have been scored primarily using the formula: n®l® where n is the number of
nodes on the trail, [is the length of the trail and « > 0 and 8 < 0 are constants. Anecdotal
evidence has suggested that regardless of the choice of values, the Best Trail is consistently
outperformed by ant colony optimization methods using values of o = 0 and 8 = 1.

The “no free lunch” theory states that some algorithms will always perform worse on some
inputs than others, and that for any pair of optimization algorithms, A and B, there will
always be as many inputs on which A outperforms B as inputs on which B outperforms A
(Wolpert and Macready 1995; Wolpert and Macready 1997). Future work will investigate
why the Ant Colony approach seems to out-performs the Best Trail in finding solutions to
TSP, and why the Best Trail algorithm appears to out-perform the ant colony optimization
approach for Web site trail finding.

Irrespective of the algorithm used to compute the trails, better scoring functions are required
which reflect the needs and desires of users. These functions should maintain and enhance
the existing virtues of relevance and conciseness. They should also prevent topic drift, dis-
criminate between local and global links and emphasise the differences between embedded,
structural and associative links (Nielsen 2000).

Chapter 4

Navigability and Starting Point
Selection

For what shall it profit a man, if he shall gain the whole world, and lose his own
soul?

Mark 8:36

To gain that which is worth having, it may be necessary to lose everything else.

Bernadette Devlin

If I were to wish for anything, I should not wish for wealth and power, but for the
passionate sense of potential.

Sgren Kierkegaard

97

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 98
4.1 Introduction

In order to find information in the Web, surfers often adopt the following two stage strategy.
First, they submit their query to a search engine, such as Google, AltaVista or Fast, which
directs them to a page within a Web site containing information relevant to whatever they are
seeking, and secondly they navigate within this Web site by following hyperlinks until they
either find the desired information, or they repeat the process by reformulating their original
query (Nielsen 1997).

The previous chapter described an algorithm for automating the navigation process, given a
set of suitable starting points. Whilst investigating a Web site by exploration from highly
relevant pages is effective, better results can be achieved by considering future navigation
opportunities in the starting point selection. This chapters describes a new metric, measuring
the usefulness of a page in terms of the number of trails in a graph starting from a given node.

Although search engines most likely weight home pages higher than other pages and use
metrics such as HITS and PageRank to determine authority, they do not have a general
mechanism to take into consideration the navigation potential of Web pages. Once such a
measure is available it can be weighted into the user query in order to find “good” starting
points for navigation given the actual user query. From now on, this navigability measure will
be referred to as the Potential Gain of a Web page. The application that initially led to the
development of the Potential Gain metric is the navigation engine described in this thesis, but
this notion should have wider applicability within the general context of Web search tools.

It is assumed that the only information available is the score, or relevance, of a URL to the
user’s query or information seeking goal, and the topology of the Web. A Web page should
be chosen from which to start navigation that maximises the probability that the user’s
information need may be satisfied. If the density of the neighbourhood of some starting URL,
u, is greater, many more pages can be reached in a short distance, then the Potential Gain,
or utility, of u is high. This leads to a formalization of Potential Gain in terms of the number
of trails in the induced by an out-tree.

The rest of the chapter is organised as follows:

Section 4.2 describes the Potential Gain metric and the related Gain Rank metric, which can
be used as an authority measure, similar to the HITS authority rank or the PageRank.

Section 4.3 describes two algorithms used to compute Potential Gain and Gain Rank — one
iterative, and one using matrices.

Section 4.4 shows that convergence of the set of Potential Gain values occurs within a few
iterations and that the resultant values are distributed according to a power law.

Section 4.5 describes investigations into the correlation between various ranking metrics,
proving that Potential Gain measures something distinct from that which is measured
by other ranking measures.

Section 4.6 describes experiments into the usefulness of Potential Gain as a mechanism for
selecting starting points. The key result is that incorporating potential gain into the
starting point selection measure increases the relevance of the resulting trails.

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 99

Section 4.7 concludes with ideas for future enhancements and further application of the
Potential Gain metric.

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 100

4.2 Potential Gain and Related Metrics

Informally, a “good” starting node is one which is relevant, central and is connected to a
large number of other nodes (Botafogo, Rivlin, and Shneiderman 1992; Mukherjea and Foley
1995). Several metrics have been proposed for selecting nodes in search results which relate
to the issue of starting point selection. The most famous, the PageRank citation ranking
(Page, Brin, Motwani, and Winograd 1998) only considers the effect of incoming links, whilst
Kleinberg’s HITS metrics (Kleinberg 1998) and extensions of it (Lempel and Moran 2000)
only consider the effect of single links in each direction. The Potential Gain metric considers
the effect of more distant pages.

Starting URLs should satisfy the following criteria:

1. They are relevant, i.e. their score with respect to the user’s goal is high.
2. They are central in that their distance to other pages is minimal.

3. They are connected in that they are able to reach a maximal number of other pages.

If the starting pages are not relevant, it will be difficult for users to navigate from them
and difficult for the Best Trail algorithm to find quality trails. If they are not central, then
excessively long trails may be required to find the relevant content. If they are not connected,
then vital pages are likely to be missed.

Keeping with the definitions introduced in chapter 3, the Web is viewed as a hypertext system,
H, having two components: a directed graph, G = (N, E), having a finite set of nodes (or
URLs), N = {U1,Us,...,U,}, and edges (or links), E, and a scoring function, u, which is a
function from N to the set of positive real numbers.

4.2.1 Potential Gain and Gain Rank

The Potential Gain, Pg(p), of a page, p, is defined as the sum for all lengths (or depths, if
trails are viewed as paths in an out-tree) of the product of the fraction of all possible trails
which are of length d and a discounting function f(d). The Potential Gain (or utility) of a
trail of length d is measured in terms of this function.

Formally, if the fraction of trails, Ry, to a depth, d > 0, from a node, n € N is given by

> yeout(n) Ba—1(y)
ZjeN Ry (.7)

where Ry = 1 and Out(i) = {j|(¢,7) € E}, then the Potential Gain of n is given by

Ry(n) =

dma:c

Pg(n) =) Ry(n)f(d)
d=1

The constant, Ry = 1 is used to to ensure that log Pg(n) > 0 holds for all n. The importance
of this inequality will become clear in section 4.6.

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 101

An authority function similar to the PageRank can be defined in terms of trails. The Gain
Rank of p is defined as the product of the discounting function and the fraction of trails
of length d which terminate at p. This is formally defined using the same formulae as for
Potential Gain, but with Out(n) replaced by In(n) where In(i) = {j|(5,7) € E}.

4.2.2 Discounting Functions

Two reasonable functions for f(d), when computing either Potential Gain or Gain Rank, are
the reciprocal function:
f(d) = reciprocal(d) = d=*

and the geometric decay function:

f(d) = decay(d) = ~*

where 0 < v < 1 is a constant. The justification for these measures is based on the assump-
tion that the utility of browsing a page diminishes with the distance of the page from the
starting URL. This assumption is consistent with experiments carried out on real Web data
(Huberman, Pirolli, Pitkow, and Lukose 1998; Levene, Borges, and Loizou 2001), and with
studies showing that the probability of a user following a path of length n decreases as n
increases (Silverstein, Henzinger, Marais, and Moricz 1999).

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 102
4.3 Computing Potential Gain

The Potential Gain is computed by algorithm 3 (figure 4.1). The algorithm takes three
parameters — a directed graph, G = (N, E), describing the topology of the Web site; a number,
dmaz > 1, defining how many iterations should be performed; and the discounting function,
f- For the following experiments, the reciprocal function f(d) = d~! is used. This algorithm
clearly takes time in the order of O(dez|F|) and requires space in the order of O(|N|), in
addition to the space required to store the graph. The algorithm computes values for all
nodes in advance and is suitable for an in-memory graph as used with Web sites. For larger
graphs similar techniques can be utilized to those proposed for the PageRank citation metric
(Page, Brin, Motwani, and Winograd 1998; Haveliwala 1999; Kamvar, Haveliwala, Manning,
and Golub 2003b; Kamvar, Haveliwala, and Golub 2003; Kamvar, Haveliwala, Manning, and
Golub 2003a).

Algorithm 3 (Gain(G, dyaz, f))
1. begin

2 for d =1 to dyuz

3 foreach n € N

4 C[la n] - E(n,o)eE C[O’ 0]

5. nf < nf +c[1,n]

6 end foreach

7 foreach n ¢ N

8 c[l,n] < c[1,n]/nf

9 Pg[n] < Pg[n] + c[1,n] = f(d)
10. end foreach

11. c[0] < ¢[1]

13. end for
14. return Pg
15. end.

Figure 4.1: The algorithm for computing Potential Gain values where Pg represents the
array of gain values, c¢ represents the array of normalized reference counts, nf represents a
normalization factor. The array c is initialized such that c[0,n] =1 for all n € N.

The Potential Gain can also be defined in terms of the adjacency matrix, M for the graph
G. Given such a matrix and a vector, R;p;; of initial values where each element of R;,;; is set
to the reciprocal of the number of nodes in G (|N|~!), the Potential Gain can be calculated
using algorithm 4.

A weighted matrix, A can be given by A = diag(ones(1,S)./(1 + Outdegree)) * M where
Outdegree = sum(M'"), S is the size of M and ./ denotes matrix right division. It is the matrix

A which serves as the basis of the matrix definition for PageRank (Page, Brin, Motwani, and
Winograd 1998).

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 103

Algorithm 4 (Gain(M, Rinit, dmaz))
begin
for d=1 to diuz
R = Ripgy * (M")
df = sum(R)
R = R/df
Pg=Pg+d 'R
end for
return Pg
end.

© RN oW

Figure 4.2: The algorithm for computing Potential Gain using matrix transformations.

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 104

4.4 Experiments

Several experiments have been conducted to test various properties of the Potential Gain and
Gain Rank metrics. These have been performed using the same corpora detailed in section 3.9,
and summarized in figure 3.10.

4.4.1 Convergence

The algorithm to compute Potential Gain was described as taking time proportional to
O(dmaz-|E|)- In practice, after a brief settling period, convergence to a set of Potential
Gain values occurs in a short space of time. Figure 4.3 shows this convergence process on the
TREC WT10g corpus. The same process occurs with all corpora, albeit at slightly different
rates. The probable error refers to the level of discrepency between the values in the current
iteration and those in the previous one.

Probable Error (Log)

Iterations

Figure 4.3: Potential Gain values converge rapidly in a few iterations.

4.4.2 Power Law Distributions

Power law relationships have been found for PageRank and many other Web-related phenom-
ena (Adamic 2002; Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins, and
Wiener 2000; Pandurangan, Raghavan, and Upfal 2002). Given the power-law distribution
in Web page outdegrees, it was predicted that the Potential Gain metric, which is a function
of the outdegree should be similarly distributed.

Figure 4.4 shows that bucketed values for Potential Gain appear to follow a power-law distri-
bution, with exponents of between 0.9238 and 1.1488 for the Web sites of the DTI, Birkbeck

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 105

and UCL and for the TREC WT10g corpus. However, figure 4.5 shows that the potential
gain values for the the page on the Sleepycat web site are not distributed according to a power
law. One possible explanation for this is that the extensive program documentation found
on the site has links which are not distributed according to any power law. The hypothesis
that this is common to all such documention can be rejected for two good reasons. Firstly,
the JDK 1.4 Javadocs have Potential Gain values which are distributed in such a manner
(figure 4.5). Secondly, the structure of object-oriented programs leads directly to power law
distributions, as will be shown in chapter 8. An alternate hypothesis is that the result is
due to systematic link creation by a single user. This hypothesis is also rejected, as the site
and the documentation was built up over many years and is maintained by a large group of
people.

y=-09245- 14707 *
R =08819

¥=-09236x - 1.8298
R = 06086

Frequency (log)

Frequency (log)

12 10 K] K 4 2 0
Potential Gain (log) Potential Gai (log)

(a) DTI (b) Birkbeck

e
q
. .
<

\ y=-1.0438x - 19369

D 3 RP= 09698
Q . y=-1.1488x - 36612 3
R - 08524 g
H

\) \

requency (log)

Frequency (log)

R A2 0 K] K} 4 2 0
Potential Gain (log) Potential Gai (log)

(c) UCL (d) TREC

Figure 4.4: Log-Log plots showing power law distributions in the values of Potential Gain
for the web sites of (a) the DTI, (b) Birkbeck and (¢) UCL and also for the pages of the
TREC WT10g corpus.

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 106

y=-0.9246x - 1.754
R =0.7969

Frequency (log)

Frequency (log)

y=-0.1556x + 1.8964
R=00129

9 K] 7 K 5 4 3 2 1 0
Potential Gain (log) Potential Gai (log)

(a) Sleepycat (b) Javadocs for JDK1.4

Figure 4.5: Log-Log plots showing (a) that there is no power law in the distribution of
Potential Gain values on the Sleepycat web site (b) that there is such a distribution in the
values of potential gain for pages within the JDK 1.4 Javadocs.

4.5 Correlations between Ranking Metrics

The next two sections will attempt to answer two key questions. This section will attempt to
answer the question of whether or not calculating the Potential Gain for the pages in a corpus
tells us something new about the pages within it, or whether Potential Gain is simply a re-
formulation of existing metrics. The following section, will attempt to answer the question of
whether Potential Gain is a useful metric in the selection of starting points for expansion via
the Best Trail algorithm. A third, and equally important question is whether the Potential
Gain approximates any human assessment of the pages in questions. Unfortunately, answering
this question requires a great deal of time and resource and is beyond the scope of this thesis.

4.5.1 Experimental Methods

It can be established that the Potential Gain provides something novel, by direct comparison
of the values and the rankings provided by various Web metrics. Analysis has been performed
on the correlation matrices for values of Potential Gain, Gain Rank, PageRank, indegree and
outdegree as well as scores computed using Kleinberg’s HITS algorithm (Kleinberg 1998),
Foley’s metric for identifying landmark nodes (Mukherjea and Foley 1995) and the logarithms
of all these values.

Correlations were computed using Pearson’s product moment correlation coefficient (r?),
Kendall’s 7 statistic and Spearman’s p - the latter two being considered most appropriate
for measuring non-linear correleation (Everitt 1998):

Pearson’s 72 product moment correlation coefficeient. r is “an index that quantifies the

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 107

linear relationship between a pair of variables” (Everitt 1998) and is given by:

n

S @B 7)
VI @ D2 D)

r

Kendall’s 7 shows a correlation between two rankings, and is given by:

25
n(n —1)

T =

where S = P — () where P is the number of pairs where the observed rankings are equal
and Q is the number where the observed rankings are in the opposite direction.

Spearman’s p is equivalent to a Pearson correlation on the rankings of the values. If the
ranked values of two variables are a; and b; and d; = a; — b; then p is given by:
6 Z?:l d’?

=1 2=t
p n3—n

Pearson’s product moment correlation coefficeient was used to contruct a set of correlation
matrices showing linear correlation between each of the Web metrics. The webcases from
Sleepycat, SCSIS, UCL, UCL-CS, Intel, Birkbeck, DTI and JDK 1.4 were all tested. The
resulting matrices are given in appendix C. The non-linear correlation metrics (Kendall’s
7 and Spearman’s p) were used to construct a second set of matrices, showing non-linear
correlation. These are given in appendix D.

4.5.2 Discussion

Some evidence was found of correlation between PageRank and indegree and between Gain
Rank and indegree but this is neither consistent nor statistically significant. The analysis
confirms the result that PageRank is not strongly correlated with indegree — despite being
proposed as a predictor of indegree values (Pandurangan, Raghavan, and Upfal 2002; Page,
Brin, Motwani, and Winograd 1998).

The most pertinent question is whether there is evidence of correlation in values or rankings
between Potential Gain and the other hub metrics such as outdegree or Kleinberg’s hub
rank. Strong correlations have been found between between the rankings induced by all three
metrics. However strong linear correlations exist for some of the Webcases specified. If each
combination is considered, then on at least one real-world graph, the correlation is low. This
phenomena is interesting, but its explanation is beyond the scope of this thesis. Since the
metrics are clearly related but evidently distinct, investigation is required into which metric
is most effective in increasing the scores (and relative quality) of the returned trails.

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 108
4.6 Improving Starting Point Selection

In order to evaluate the effectiveness of the Potential Gain metric in improving trail finding,
the following experiment was performed. Trails were found by traversing the graph from
starting points selected by taking the top 15 pages. These pages were selected by sorting the
list, firstly by using the number of keywords matched in the trails and in the documents, then
by each the measures shown in figure 4.6, in which u(p) denotes the relevance to the query
of p, Out(p) denotes the outdegree of p, Hub(p) denotes the hub score of p as computed by
HITS, Pg(p) denotes the Potential Gain of p, Found(p) denotes the order in which the URLs
were indexed and a = maz(3,1 — 55 log(C)) where C is the number of documents matching
the query. The values for a and C come from Pinkerton’s metrics, as described in section 2.6
(Pinkerton 2002).

The first measure (u(p), Found(p)) was used as a baseline against which the others were
compared. This baseline measure is implied naturally by the order of pages in the posting
lists, yet should still lead to good trails. The Web robot uses a BFS crawling strategy, which
has been shown to lead to high quality pages (Najork and Wiener 2001). Hence, preferring
pages which were found earlier in the crawl should be beneficial. However, link-analysis
techniques can lead to better results.

p(p), Found(p) p(p), Pg(p)
p(p), Out(p) w(p), Hub(p)
1(p) Pg(p) p(p)Out(p)
p(p) Hub(p) p(p) log Pg(p)
11(p) log Out(p) p(p) log Hub(p)

log pu(p) log Pg(p) log pu(p) log Out(p)
log u(p) log Hub(p) ap(p) + (1 — a)Pg(p)

Figure 4.6: Metrics used in tests of Potential Gain as a starting point selection metric.

The tests were conducted using eight data sets — based upon six corpora, summarized in
figure 4.7, and eight query sets, summarized in figure 4.8.

Data Set Corpus / Webcase

Birkbeck Crawl BirkBeck College Web site

SCSIS Crawl of the School of CS&IS Web site
UCL-CS Crawl of UCL’s Computer Science Web site
TREC TREC WT10g data set

DBLP-Authors | Index of DBLP data (see chapter 7)
DBLP-Docs Index of DBLP data (see chapter 7)
JDK JDK 1.4 Javadocs
JDK-Classes JDK 1.4 Javadocs

Figure 4.7: Corpora used in tests of Potential Gain as a starting point selection metric.

Figure 4.9 shows the results of experiments into the effectiveness of the first four measures
in figure 4.6 in which the measures Found(p), Pg(p), Out(p) and Hub(p) are used as an

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 109

Data Set Query Set

Birkbeck Queries taken from HT://Dig logs

SCSIS Queries taken from HT://Dig logs
UCL-CS Queries taken from Glimpse logs

TREC Queries 451-500

DBLP-Authors | List of Citeseer’s most popular Authors
DBLP-Docs List of Citeseer’s most popular documents
JDK Queries taken from AutoDoc Logs
JDK-Classes List of Java Classes

Figure 4.8: Queries used in tests of Potential Gain as a starting point selection metric.

additional sorting filter after the results have been ordered by p(p). Scores are calculated
using the weighted sum and sum distinct and give a measure of performance relative to the
baseline.

The table shows the average increase across all test sets. However, since not all the test sets
contain equal numbers of queries, the results are skewed in favour of those metrics which
perform well on the queries in the smaller test sets. A weighted average is also given, in
which the averages are given across the set of possible queries. Unfortunately, the results are
then skewed in favour of the metrics which perform well on the queries in the larger test sets.

The results show that, on average, any of the three metrics improve on the baseline result on
over 75% of the test corpora. By considering potential navigation, trails can be discovered
with more content relevant to the user’s information need, hence raising the assigned scores.
Kleinberg’s hub measure appears the strongest of the metrics overall, with the Potential
Gain and Outdegree both performing better on certain test sets. Overall, it is possible to
conclude only that the metrics all represent useful functions but that the magnitude of the
improvement is small, and that tests must be conducted relative to the expected queries and
data for optimal results.

In certain circumstances, more effective results can be achieved by a weighting of the IR score,
u(p), and the link-analysis metrics. Figure 4.10 shows the average relative increase in trail
scores achieved by combining the IR score in the remaining 10 ways listed in figure 4.6.

The results show that application of these techniques on the TREC data set leads to consis-
tently negative results, despite positive results on the previous tests. In contrast, any of the
metrics perform well on the JDK Javadocs. It is possible that this is because the Javadocs
are well connected, whilst the TREC data is loosely connected, with a low average outdegree.

The combination of Potential Gain based upon Pinkerton’s method, au(p) + (1 — a)Pg(p)
is a weighted average of u(p) and Pg(p) and leads to consistently negative results as the
units of u(p) and Pg(p) differ substantially. Other experiments suggest these results hold for
combinations with Out(p) and Hub(p).

The overall results show that in order to obtain the best pages to start navigation, given a
user goal, the set of pages p1,p2 ... Pmaz should be selected that maximise the values of either
w(p)Pyg(p) , u(p)log Pg(p) or u(p) log Out(p) unless specific knowledge of the corpus is given.
For example, testing using TREC data should be performed using u(p), Pg(p)-

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 110

Weighted Sum Sum Distinct
Test Set Queries Pg Out Hub Pg Out Hub
UCLCS 26 | 3.55% -2.05% 3.60% | 2.43% -3.49% 3.60%
TREC 50 | 3.10% 1.37% 2.77% | 3.57% 1.25% 3.11%
SCSIS 151 | 1.13% 2.22% 1.57% | 0.62% 1.52% 1.07%
JDK/Classes 2664 | 0.78% 1.12% 0.59% | 1.08% 1.28% 0.90%
JDK/Misc 23 | -0.66% -2.41% -1.13% | 0.10% -0.76% 0.15%
BBK 12698 | 0.70% 0.65% 0.99% | 0.69% 0.64% 1.00%
DBLP /Docs 100 | 0.09% 0.75% -0.29% | 0.44% 1.36% -0.32%
DBLP/Authors 100 | -0.26% 0.55% 0.17% | -0.02% 0.17% -0.10%
Corpus Avg. 1.06% 0.27% 1.03% | 1.11% 0.25% 1.18%
Query Avg. 0.71% 0.73% 0.92% | 0.76% 0.75% 0.98%

Figure 4.9: Percentage increases in trail score achieved by sorting by the given metrics in
preference to Found(p) after previous sorted by the number of keywords then by the relevance
u(p)- The two averages show the mean values taken over all corpora or webcases and over all
queries.

A limited analysis was performed of starting-point selection considering only the single best
trail returned. The findings supported the conclusions drawn here without significant new
developments.

%

Q Q N Q

@ W S S S
o e & ¢ ¢ & & &
%“ N Q Q 8 Q Q Q o o o S

< o & N N N 3 N N N N N
UCLCS 26 7.26% 6.42% -15.48% 8.15% 2.05% -22.14% -2.04% -0.01% -24.12% -42.74%
TREC 50 -12.25% -12.84% -39.32% -10.66% 0.28% -41.35% -22.32% -8.24% -37.32% -51.86%
g SCSIS 151 -0.85% 1.53% -13.98% -0.42% 1.90% -14.27% -3.55% 0.67% -13.58% -21.79%
& JDK/Classes 2 664 9.73% 9.72% 8.28% 9.91% 10.75% 8.45% 6.74% 10.40% 7.54% 0.11%
2 JDK /Misc 23 3.40% 6.07% -1.31% 3.92% 11.40% 039% -0.73% 13.03% -2.64% -11.20%
< BBK 12608 6.88% 354% -21.79% 6.83% 6.82% -28.27% -29.58%
2 DBLP/Docs 100 -0.03% -219% -296% -030% -0.14% -3.50% -186% -3.34% -3.50% -6.86%
= DBLP/Authors 100 3.09% -502% -3.36% 3.00% -4.71% -3.69% 237% -6.02% -3.00% -1180%
Corpus Avg, 215% 00% -11.99% 2.56% 354% -13.05% -3.06% 0.03% -10.95% -2L96%
Query Avg. 7.16% 4.43% -21.25% 7.15% 7.30% -21.63% 1.03% 1.69% 0.94% -24.31%
UCLCS 26 5.99% 3.63% -13.87% 7.22% -0.25% -20.98% -2.20% -2.94% -21.41% -45.15%
TREC 50 -13.39% -13.32% -37.87% -12.11% -4.23% -38.88% -21.02% -9.49% -34.50% -49.59%
SCSIS 151 567% -3.90% -18.38% -5.57% -364% -1853% -8.39% -4.79% -18.46% -26.27%
© JDK/Classes 2664 10.04% 9.55% 7.99% 10.18% 10.72% 8.16% 548% 1039% 6.75% -5.77%
£ JDK/Misc 23 536% 3.26% 0.15% 525% 1035% 035% -0.03% 9.59% -0.93% -13.54%
~ BBK 12 698 411% -1.14% -29.32% 3.95% 1.54% -29.69% -29.71%
& DBLP/Docs 100 -148% -0.83% -3.8% -L76% -048% -407% -3.26% -0.93% -4.05% -2.61%
@ DBLP/Authors 100 -334% -367% -5.63% -347% -3.06% -555% -411% -A38% -6.53% -6.41%
Corpus Avg. 020% -0.80% -12.55% 0.46% 1.37% -13.65% -4.79% -0.36% -11.30% -22.38%
Query Avg. 4.88% 0.60% -22.57% 4.78% 2.98% -22.86% 0.73% 1.65% 0.75% -25.39%

Figure 4.10: Shows the increase in trail scores achieved by using various measures for starting point selection.

NOLLOHATHS LNIOd ONILHV.LS ANV ALITIHVOIAVN ¥ HHLLd/ VHO

TTI

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 112

4.7 Concluding Remarks and Future Work

This chapter has described a metric for expressing the utility of a page in terms of the potential
navigation paths available from it. By combining the IR score with the potential gain better
starting points can be selected from which to run the Best Trail algorithm. The experiments
conducted have also shown that Kleinberg’s hub metric and the outdegree of the pages in
question can also be valuable for this task in certain situations.

However, to fully test the effectiveness, an evaluation is required using user judgements of
whether the individual pages selected are more useful. Such an experiment could be performed
through a user-study or via TREC-style, corpus-based measurement. If the findings of such
experiments are positive, the Potential Gain will have far greater impact.

4.7.1 Query Specific Potential Gain

Some extensions of the Potential Gain metric are possible. For example, it is possible to
compute a query specific version of Potential Gain, analogous to the query specific and topic
specific PageRanks (Richardson and Domingos 2002; Haveliwala 2002). The fraction of trails,
Rg to a depth, d from a node n is given by

Ry(n) = Z Rq 1(y)

yEOut(n) E]EN Rd:1 (.7)

where N in the set of nodes in the Web graph. If, this is initialized with the page relevances,
Ry(n) = p(n), then a query specific Potential Gain measure can be gained in terms of the
relevant pages reachability with paths of given lengths. If the relevance values are normalised
between 0 and 1, then the formula for Potential Gain gives an upper bound for the query
sensitive measure.

4.7.2 Multi-Metric Combinations

It is also possible to combine some or all of the metrics shown in many ways. Unfortunately,
it is impossible to exhaustively test all combinations. However, it may be possible to use
a GA to compute optimum combinations using various metrics. For example, the starting
points could be selected using a combination such as:

14(p)* Pg(p)’ Gr(p)” Hub(p)’ Auth(p)* Foley(p)* PR(p)"

where «...n are learned by the GA and Foley(p) refers to Mukherjea and Foley’s metric for
landmark nodes (Mukherjea and Foley 1995). Of course, as more metrics are combined, the
perceived improvement in quality lessens and the cost of computation increases, both when
generating the webcase data and during query time.

4.7.3 Site-based Potential Gain

It has been shown how potential gain can be computed for Web pages. It is also possible to
computed the potential gain of a Web site. In this instance, sites are taken as nodes and a

CHAPTER 4. NAVIGABILITY AND STARTING POINT SELECTION 113

link is added to the graph wherever there exists any two pages on different sites with a link
between them. Such an approach would be useful for finding hubs and directories (such as
Yahoo! or the ODP) for use with global search systems. If the Potential Gain was combined
with a measure of relevance, topic specific hubs could also be identified.

Chapter 5

Architecture of a Navigation Engine

Architecture is the art of how to waste space.

Philip Johnson

Remember that happiness is a way of travel — not a destination.

Roy M. Goodman

114

CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 115
5.1 Introduction

This chapter presents a description of a Web site navigation engine. The navigation engine
is a complete system for trail-based IR, combining work in the fields of search engines, IR,
graph representation and design patterns. It is termed a navigation engine as it is designed
to solve the navigation problem. As discussed in chapter 2, the navigation problem is distinct
but closely related to the problem of resource discovery. Similarly, the navigation engine
that has been developed is closely related to a conventional search engine, but with an added
emphasis on showing results in context and providing aids for future navigation.

Problems such as file-type recognition, index creation and document summarization are rel-
evant to conventional search engines. The need to maintain efficient access to the graph
structure is a problem faced in the development of other engines. For example, those which
utilise the concepts of information units (Li, Candan, Vu, and Agrawal 2001), or variants of
the HITS (Kleinberg 1998; Kleinberg, Gibson, and Raghavan 1998) and SALSA (Lempel and
Moran 2000) metrics. A similar problem, also faced by such engines is the need to provide
relevance scores for documents in close proximity to the best nodes, but which themselves
have a low (or zero) relevance scores.

The rest of this chapter is organized as follows:

Section 5.2 provides a brief overview of the main components of the navigation engine.
These are the robot, parsers, index builder, query engine, trail engine and NavSearch
UL

Section 5.3 discusses the creation of the files required to support the IR and trail generation
algorithms.

Section 5.4 provides details of a flexible architecture for supporting multiple trail discovery
algorithms and optional index creation options. Several algorithms have been testing
using this architecture including the Best Trail algorithm.

Section 5.5 discusses the advanced query syntax and explains how the various features are
supported. The syntax is based upon analysis of the features supported by AltaVista,
Fast and Google.

Section 5.6 discusses options for supporting PDF, Postscript and other non-HTML file
types. All the files supported are converted into HTML, XML or plain text.

Section 5.7 discusses a simple algorithm for computing context-senstive web page sum-
maries. The summaries offer noticeable advantages over those produced by most search
engines and can be computed quickly and efficiently.

Section 5.8 concludes with directions for future work.

User interface options are discussed in the following chapter which descibes how this technol-
ogy is applied to finding and displaying trails on Web sites. Issues related to scalability such
as distributed indexes, distributed webcases, and merging of results from multiple sources are
also discussed in the next chapter as these relate strongly to Web-scale data sets. The current
single-machine architecture will happily scale to several million pages.

CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 116

5.2 Top level Overview

Figure 5.1 shows the navigation engine architecture. The main components are :

e The robot or crawler which downloads Web pages.

e The parsers or processors which extract keywords, links and metadata from HTML,
XML and plain text files.

e The indexr builder, which performs a set of post-processing operations to transform the
processors output into usable webcases.

e The query engine, which assesses the relevance of pages to the users’ queries.
e The trail engine which implements the Best Trail algorithm.

e The NavSearch user interface for displaying the results.

Crawler
/ Robot

@
o
< % £
’AQ =
page E
=
‘ AN
User .
% Web Site(s)
%
)
%
<.
et Trail %
Enei
ngine 2, j
e g
Orgy &
Query &
Engine

~~~~~~~

Figure 5.1:  The navigation engine architecture. Unshaded circles indicate components
common to search engines; shaded circles indicate components specific to the navigation
engine; boxes denote external entities; and open-ended boxes denote internal data stores.
Solid arrows represent data flow and dotted arrows represent flows of important requests for

information (URLs and Queries).

The navigation engine uses an extensible, Java-based robot ideal for controlled crawls of
Web sites (Shaw 1998; Wheeldon 1999; Skene 2001). A larger, faster, distributed robot is
the Mercator robot (Najork and Heydon 2001; Heydon and Najork 1999a). Many of the
problems faced during the development of the robot have already been discussed with respect



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 117

to Mercator (Heydon and Najork 1999b). The strategies used by Mercator to deal with the
various problems could be applied in this case. These strategies include methods for dealing
with queue distribution (as noted in section 2.4, and the re-implementation of the URL,
HTTP and text handling sections of the Java class libraries.

The processors are components controlled by the robot which provide parsing facilities for
HTML, XML and plain text. Each component has a Common Object Request Broker Archi-
tecture (CORBA) interface which allows distributed communication. The downloaded files
are converted to abstract document representations known as FeatureDocs. These contain
abstractions of identifiable features within the document, such as XML element tags, HTML
heading or emphasis tags, URLs and hyperlinks.

The IndexBuilder performs a number of post-process operations on the data provided by the
robot as FeatureDocs writing data to a number of files to form a webcase. The navigation
engine takes these webcase files, and the query from the user and returns a set of trails in XML
format. This XML is then converted using Cocoon! to form the NavSearch user interface with
which the user interacts. Not shown in figure 5.1 is the summarization engine which takes a
document representation and query and returns a short relevant extract. The summarization
engine is called by the NavSearch Ul generator, and is discussed in section 5.7.

! http://xml.apache.org/cocoon/



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 118

5.3 Webcases

A webcase is a set of files which can be used for answering queries. These files typically
relate to a single Web site, domain or other logical structure. In order to be of use to the
navigation engine, the files must be arranged so that they can satisfy the following functional
dependencies. In order to achieve maximum speed, the files are indexed according to these
definitions using either a Berkeley DB (Sleepycat Software 2001) file or an in-memory lookup
table with offsets to a position accessed using a RandomAccessFile.

In memory references to webcase files are encapsulated by Webcase objects. These are ex-
tended singletons (Gamma, Helm, Johnson, and Vlissides 1995) which allow only one object
per Java Virtual Machine (JVM) for each distinct webcase on disk. Webcase references are
loaded on demand when first queried, as per the Lazy Load pattern (Fowler, Rice, Foemmel,
Hieatt, Mee, and Stafford 2002).

URL — ID
ID - URL

IDs are 32-bit integers assigned in sequence to each URL such that any two identical URLs will
have an identical ID. It is neccessary to convert URLs to IDs whenever a URL is specified as
part of a query argument. This same operation is required frequently during index creation,
during which the map will expand as more URLs are recognized. It is also neccessary to
convert internal IDs into URLs for returning to the user. The mappings between URLs and
IDs are both stored in a Berkeley DB file, and accessed through a wrapper class which adds
additional in-memory caching. This may also be used when checking equality between URLs
from webcases with non-comparable IDs.

KEYWORD — POSTINGS, IDF,[ID, Score]

This represents the operation of an inverted file which returns posting lists for documents.
Many variants return keyword position information with each score. In the navigation engine,
this information is aggregated and stored in a Berkeley DB file. The normalized tf.idf scores
are pre-computed in such a way that a document score can be computed via a simple sum
(Salton and Buckley 1998). Scores are calculated for all documents. Ranks are calculated
only for the top n documents to be used as starting points.

ID - AUTHOR, TITLE, FILETY PE, FILESIZE
ID — [KEYWORD, SCORE, SENT]x

It is essential for the presentation of results that information relating to a given web page can
be extracted quickly. Meta-data concerning each page is presented directly to the user. The
document keywords and scores are passed to the summarizer which generates short extracts
as described in section 5.7. The keyword scores are the same tf.idf scores as used in the
inverted index. All data is stored in a random access file at keyed locations. The greatest
bottleneck in the whole system is currently the misuse and required translation of Universal
Character Set (UCS) Translation Format (UTF) data in this context.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 119

ID — IDx

A Web Graph is a directed graph (digraph) G = (N, E)) where each page in the corpus is rep-
resented by a node, n € N, and each link between two pages by an edge, e € E. A Web Graph
implementation is required to return lists of URL Ids corresponding to inlinks and outlinks
as indicated. A canonical representation of a graph G = (N, E) is a representation such that
both NV and F are ordered sets and contain no duplicate edges. Unless stated, it is assumed
that all graphs dealt with are stored in a canonical format. These are stored in-memory using
an adjacency list similar to the Linkl implementation (Randall, Stata, Wickremesinghe, and
Wiener 2002).

KEYWORD — IDF

ID = /(X tf.idf)
ID — [CandidateTitle]*

These dependencies must be satisfied by temporary files at various stages during post-processing.
The files in question are typically stored alongside those required for the webcase and are used
only during construction of the webcase. In order to construct the index, the system must be
able to obtain ¢df values for any given keyword, as well as normalization factors for the ¢ f.idf
scores. These normalization factors correspond to those suggested by Salton, as discussed in
section sec:lit-ir.

Candidates titles are taken from the text on inlinks. A single link-text title is selected to
describe a document when no other title can be found — i.e. when the document has not
been indexed or contains no title or heading tags. This choice of title is motivated by a desire
to avoid reliance on starting text or filenames, which may often be misleading. By selecting
link-text titles, document are shown in the context of titles given in the pages which references
them. Selecting a single title is a naive step to prevent query-time processing of the pages.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 120
5.4 An Extensible Component Architecture

The TrailAlgorithm class acts as a facade (Gamma, Helm, Johnson, and Vlissides 1995) to
any external client, hiding the complexity of the caching mechanisms, summarization, web-
case handling and information retrieval options from the Graphical User Interface (GUI). It
allows for a strategy (Gamma, Helm, Johnson, and Vlissides 1995) in which many different
trail finding algorithms can operate, most notably the Best Trail algorithm, and acts as a
template (Gamma, Helm, Johnson, and Vlissides 1995) for their implementation. The Ac-
tiveWebcase class also acts as facade to TrailAlgorithmsubclasses by hiding the complexity
of the TREngine, TrailNode construction and webcase handling. This separates the webcase
management from the trail finding algorithms. Figures 5.2 and 5.3 show the structure of the
classes concerned.

PagefFilter IREngine
(from core) (from core)
Pag§FiIter() IREngine()
getFilter() getRelevance()
- i
- getWordCount()
Actl::z\r:VSOt:;ase estPages() getRelevances() Y
'getWordMasks() [l
- igetWordCounts() {fromicore)
ctiveWebcase() getSuggestedUrls() -
ct!veWebcase() = |0adRelevanceArray() [¥igetUriString()
ctiveWebcase() [¥igetRelevance()
etName() {Z¥setRelevance()
etGraph() [®igetMask()
etTrailNode() [F¥setMask()
etTrailNode() [®igetTermCount()
etSuggestedUrls() Webcase ¥ setTermCount()
etUriCount() [®isetProperty()
etUrlid() NodeSource I®igetProperty()
etUrlString() (from core) [®igetProperties()
etPageOffsets() [®itoString()
etUriDataOffsets() / NodeSource() [[~==—======2 [®equals()
etRelevance() etTrailNode() ®igeturl()
etWordMask() etTrailNode() [®igetOutlinks()
etWordCount() e ®igetUid()
etRelevances() \~\\\\ etWebcase()
etWordMasks() T~ TrailSummarizer4 etAuthor()
CPageDataFis) T omen Tiieg
etTitle
returnPageDataFile() \ 'setTitle
etUriDataFile() ShortTitleGenerator getSummary() etShor(1)TitIe()
; addSummary() N
returnUriDataFile() (from text) " setShortTitle()
etDuplicates() pummariza) ShortTit
oActive() @ShortTitleGenerator() GassignSummaries() szsU:tm:;?)
ixShortTitles() -IoadRegexps() 'setSummary()
etGainRanks() [®igetGenerator()
etPotentialGains()
etHubs()

Figure 5.2: Behind the facade. Structure of classes in the core package

From this, the following assumptions can be made for each JVM, of which there should be
only one during normal server operation:

1. Only one Web Graph will be present in memory, per webcase.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 121

2. Only one copy of any Berkeley DB file will be open, per webcase.
3. Only one copy of any offsets file can be found in memory, per webcase.

4. Changes to any of these are going to impact on any other sessions, and any TrailAl-
gorithm subclass.

5.4.1 TrailAlgorithm subclasses

Figure 5.3 shows the position of two implemented algorithms and the infrastructure needed
to write them. The two classes, TrailAlgorithm and ActiveWebcase are all that is needed
alongside abstract data types to represent nodes, trails and queries.

ActiveWebcase
(from core)

ActiveWebcase()

ActiveWebcase()

ActiveWebcase()
ESigetName()

I¥igetGraph()
I¥igetTrailNode()

TrailAlgorithm

(from core)

I¥¥flushCache()

@ addStartingPoint()
i@getTrailSet()
B¥igetTrails()
I®¥igetTrails()

AntColony

(from ants)

BestTrail
(from besttrail)

I¥addStartingPoint()
I¥ithreadCompleted()
[igetTrailSet()

F¥addStartingPoint()
I®¥itreeThreadCompleted()
[¥igetTrailSet()

I¥igetTrailNode()
I¥igetSuggestedUrls()
E¥igetUriCount()
BSigetUrlld()
B¥igetUrIString()
getPageOffsets()
getUrIDataOffsets()
getRelevance()
getWordMask()
getWordCount()
getRelevances()

getWordMasks()
getWordCounts()
getPageDataFile()
returnPageDataFile()
getUrIDataFile()
returnUrlDataFile()

0

0

Figure 5.3: Two subclasses inherit from TrailAlgorithm, which relies heavily on ActiveWe-
bcase. TrailAlgorithm and ActiveWebcase are the only two classes with which either
BestTrail or AntColony need interact.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 122

To demonstrate how this fits together, a simple example of a trail finding algorithm will
be described which returns the starting point and most relevant outlink as a trail for each
starting point.

First a class is created extending the template class.
public class BestLinkAlgorithm extends TrailAlgorithm

This means there is no longer any concern regarding:

1. Starting point selection.

2. Computing relevances (IR).

3. Loading node properties (title, etc.).
4. Document summarization.

5. Caching.

All these features are provided by the TrailAlgorithm and ActiveWebcase classes. Figure
5.4 shows the interaction of these classes, using BestTrail2 as an example of a subclass, from
the request of a TrailSet to the given answer.

A container is required for the completed Trails.
private TrailSet myTrailSet = new TrailSet();

Something must be done with the starting points, in this case obtaining the WebGraph and
relevances and finding the best outlink.

public void addStartingPoint(ActiveWebcase webcase, int urlid) {
// Get the WebGraph
WebGraph graph = webcase.getGraph();
// Get the outlinks of the starting point
int[] outlinks = graph.getNode(urlid).getOutlinks() ;
// Get the array of relevances for all nodes in the corpus.
double[] relevances = webcase.getRelevances();
// Find the best one.
int bestUrl = -1; double bestRel = 0.0;
for (int c1=0;cl<outlinks.length;cl++)
if (relevances[outlinks[c1]]>bestRel)
{
bestUrl = ci;
bestRel = relevances[outlinks[c1]];

}
// Construct a new Trail to hold the nodes
Trail myTrail = new Trail();



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 123

| GUI | : TrailAlgorithm

| : Cache || : BestTrail2 | | : TrailSummarizer4 || : ActiveWebcase

tTrails(Query, int
getTrails(Query, int) get(Object)

getSuggegtedUrls(int)

addStartingPoint(ActiveWebcase, int)

getTrailSdt

) |

getGraph()

getRelevances( )

-

getTrailNode(int)

summarize(Collection, Query, ActiveWebcase)

getTrailNode(int)

put(Object, Object) .

Figure 5.4: Behind the facade. Interaction of core classes.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 124

// Build the Trail
myTrail.add(webcase.getTrailNode (urlid));
myTrail.add(webcase.getTrailNode (bestUrl));
// Add it to the TrailSet

myTrailSet.add (myTrail) ;

Successive calls to this function will populate the TrailSet such that all that remains is to
provide access to it with the following method:

public TrailSet getTrailSet()
{

return myTrailSet;

This provides a complete implementation. It should be noted that there is scope here for
many improvements. Possible errors have not been accounted for. For example, what if
there are no outlinks? It should be noted that complex algorithms are better implemented
by starting (or restarting) Threads for each given starting point so that they scale better on
multi-processor machines. This can be achieved using thread-pooling techniques.

Five subclasses of this algorithm have been developed :

BestTrail implements the Best Trail algorithm as description in chapter 3. It uses a large
pool of TreeThreads, each of which expand a given navigation tree from a specified
starting point. The fixed limit on the size of this pool provides a fixed limit to the
performance of the server and prevents overloading.

AntColony implements the Ant colony optimization system described in Dorigo, Maniezzo,
and Colorni 1996. This has been used for comparative testing against the Best Trail
algorithm.

BestTrailTSP was an attempt to extend the Best Trail algorithm to apply different func-
tions and parameters, more suitable for finding solutions to TSP. It was consistently
outperformed by the ant colony scheme in limited testing.

StandardSearch implements a conventional search engine list by directly returning the
starting points.

MultiGraphBestTrail extends the Best Trail to provide support for trail finding across
multiple graphs. This is discussed in further detail in chapter 8.

5.4.2 Post-Processing and Index Creation

The term “post-processing” covers all the activity between the initial data indexing (usually
done by the robot) and the creation of a finished webcase. The construction of the index
works using three operations - readfeatures (see figure 5.5), mergefiles (see figure 5.6),



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 125

and buildtree (see figure 5.7). Many subtle variations are possible within this framework, to
permit additional weighting schemes. It should be noted, for example, that when writing the
keyword, urlid, score tuples, the URL IDs written may refer not to the document in which
the keyword was present but to some other document linked to by that document. This is
why the merge operations are required subsequently.

Algorithm 5 (Read-Features(collection))

1. begin

2 foreach document € collection

3 write document.metadata to urldata

4 foreach keyword € document

5. write keyword, urlid, score tuples to queue;

6 if queue is full

7 sort queue;

8 write distinct keyword, urlid, score to tempfile;
9

. inc j
10. end if
11. end foreach
12. end foreach

13. end.

Figure 5.5: Algorithm for reading features and writing temporary files.

Algorithm 6 (mergefiles(collection))
beginforeach distinct keyword
foreach distinct urlid
tscore = Y score
write keyword, urlid, tscore tuples to tempfileg
N furtid = Nfurtia + tscore
end foreach
end foreach
end.

Figure 5.6: Algorithm to merge and aggregate files of keyword, urlid, score tuples.

Separate from the creation of the inverted index is the task of maintaining the Web graph.
This is essential for trail detection, and the computation of ranking measures such as PageR-
ank (Page, Brin, Motwani, and Winograd 1998) or Potential Gain.

It can be seen that there are many distinct processes in this algorithm — some of which need
not wait until the crawl has finished before starting. An architecture has been defined in
which many small operations or processes can be set in motion. Each process has a set of
associated dependencies which must be fulfilled before it can begin. Once a set of these
processes has been selected by the administrator, the PostProcessHandler will attempt to
run each process in turn by resolving all dependencies until a successful conclusion is reached
before running the process itself. Should a process fail, other processes will be tried, so as to



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 126

Algorithm 7 (Build-Tree(collection))
begin
foreach keywordintempfile
foreach urlid
normalize score w.r.t. nfy 4
end foreach
write keyword, [urlid, score]+ to B-Tree
end foreach
end.

Figure 5.7: Algorithm to build inverted file in B-tree.

minimize the time lost due to failure. This has distinct similarities to the role performed by
the Unix command make -k (Oram and Talbott 1993). The algorithm for performing this
operation is given as algorithm 8. Future work might include wrapping these in Ant tasks
which perform a similar function (Bailliez et al. 2002). This would allow parallelism with
minimal code changes.

Algorithm 8 (RunProcess(P))

1. begin

2. foreach D € P.dependencies

3. if D.status =UNTOUCHED
4. RunProcess(D)

5. end if

6. if D.status = FAILED

7. P.status = FAILED _DEPS
7. return

8. end if

9.

end foreach
10.  P.process()
11. end.

Figure 5.8: Algorithm to run post-processing operations to generate webcase data.

All operations are defined in classes which extend the abstract template PostProcessor.
There is a second abstract class TransientPostProcessor which defines a post-processing
operation that must be performed (when required) every time the program is loaded. For ex-
ample, this includes loaders for in-memory processing operations, such as LoadWebGraph and
LoadRootSum. An operation performed by a class inheriting from TransientPostProcessor
will not be associated with a flag file.

The PostProcessHandler is the most important class involved in the post-processing oper-
ation. It provides the run-time environment in which all operations are performed. When
requested to do so, the PostProcessHandler will examine the list of available processes. and
instantiate all the specified post-process operations. The PostProcessHandler is a singleton



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 127

in which every PostProcessor is associated with a webcase. The synchronization of the han-
dler guarantees that no PostProcessor can be called more than once simultaneously for the
same webcase, but allows many simultaneous threads to monitor the status information. If a
second attempt is made to process the same webcase, the second PostProcessor will block
waiting. The interaction between these classes is shown in figure 5.9.

The PostProcessStatus is used to keep track of the status of each post-process operations
and records whether the operation has taken place, its success or failure, and (if it has failed)
the cause of failure. A MutablePostProcessStatus subclass of PostProcessStatus provides
an easy mechanism to set these properties, although on most occasions, using the provided
constants of FAILED, FAILED DEP (failed due to dependencies), SUCCESS, DONE (on a previous
occasion), UNTOUCHED, (succeeded with) WARNINGS or RUNNING is sufficient.

Since all classes defining operations in the post-process system extend from either PostProcessor
or TransientPostProcessor, only two examples of each type have been shown. The true in-
teraction between PostProcessor subclasses is defined in terms of the dependencies between
them, which are shown in 5.10. The PostProcessHandler will automatically determine a
route through the dependency tree in order to create the needed webcase files. It should be
noted that the dependancy tree is implied by the results of the getRequirements () method

in PostProcessor, and is never defined explicitly. The following list gives a brief description
of the function of each processor.

WebcaseDirectory Creates a directory structure to house the webcase files.

CreateldFactory Creates a UrlIdentifier for the webcase, which maps URLs to IDs and
vice-versa.

ReadFeatures Reads FeatureDocs from the repository, parses their content, and writes files
out for subsequent processing.

WebGraphFile Constructs a webgraph file from outlink data created by ReadFeatures.
CalcMaxUrl Calculates how many pages are in the corpus.

SortedTempkFile Sorts and aggregates the main keywords file, which contains tuples of the
form (keyword,urlid, score). These are merged such that only one tuple exists per
(keyword, urlid) combination and all tuples for the same keyword are adjacent in the
file. The scores are taken from the original ¢f values are combined into tf.idf values.
This is done using a modified mergesort, which sacrifices a theoretical O(n?) worst-case
complexity for very low I/O costs.

LoadRootSum Loads the normalization factors (a byproduct of SortedTempFile) into
memory.

KeywordBTree Combines the keywords file into a Berkeley DB B-Tree suitable for the
navigation engine’s use. This process includes normalizing each score with respect to
the document containing it. The result is the inverted file.

LinkTextTitlesDatabase Creates a database file mapping URL IDs to potential titles,
obtained from link text.



PostProcessHandler
(from postprocess)

CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE

PostProcessStatus

(from postprocess)

PostProcessStatus()
PostProcessStatus()
PostProcessStatus()

getFullDebug()
equals()

MutablePostProcessStatus
(from postprocess)

MutablePostProcessStatus()
MutablePostProcessStatus()
setMessage()
getMessage()
setFullDebug
getFullDebug

)

(
()

getHandler()
resetProcessorFiles()
resetProcessors()
PostProcessHandler() setMessage()
e N e
getPostProcessor() | PostProcessor getStackTrace()
getProcessorNames()
findProcessors() {fiompoetrocess)
getWebCase()
setRequiredProcesses() 14 getWebCase()
run() getName()
getFilename() getVisible()
cleanFiles() 1 setVls!b.Ie()
process() setInvisible()
setHandler()
getHandler()
getDependencies()
getDependants()
addDependant()
getStatus()
setStatus()
process()
WebcaseDirectory ReadFeatures TransientPostProcessor
(from db) (from db) (from postprocess)
getName() getName()
process|() getDependencies()
process()
writeKeyword()
CalcMaxUrl2 LoadWebGraph
(from db) (from webgraph)
getName() getDependencies()
getDependencies() getName()
process() process()

Figure 5.9: Structure of the post-process classes.

128



SortedTempFile

LoadRootSum
KeywordBTree

Figure 5.10: Dependencies between post-process operations. Blue ellipses denote transient operations. Red ellipses denote oper-
ations producing output request for the navigation engine to work. Typically it is these operations which must be selected by the
administrator.

CalcGainRank

UpdatedPageData

UpdatedUrlData

ANTONH NOILLVOIAVN V HO HYALOALIHOYYV "¢ H4.LdVHO

6¢1



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 130
SortedLinkTextTitles Sorts the table of link-text titles generated as a by-product of the
ReadFeatures process.

UpdatedPageData Updates the pagedata file (generated by ReadFeatures, and storing
the document representations) to contains accurate ¢ f.idf scores for terms.

CalcGainRank Calculates Gain Rank values for each node in the graph.
CalcPotentialGain Calculates Potential Gain values for each node in the graph.

LoadWebGraph Loads the Web Graph into memory, either from outlink data or a serialized
WebGraph file.

FileDuplicates Identifies (exact) duplicate documents. This can and should be extended to
near-duplicate detection as prescribed in Broder, Glassman, and Manasse 1997; Broder
1997; Broder 2000; Shivakumar and Garcia-Molina 1999.

UpdatedUrlData Updates the meta-data to contain titles, Potential Gain values, etc.
which were not available when the file was created by ReadFeatures.

PageDataOffsets Loads the offsets to the pagedata file into memory.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 131

5.5 Advanced Features

Most users of a search engine type short queries and do not use advanced features. However,
there is a sizable minority who either use such features regularly or who require them occas-
sionally. Advanced features are typically accessed either through a separate web form or via
special commands. These commands are almost invariably of the form option:parameter.
It is worthwhile reviewing the options supported by the major search engines before apply-
ing them to the navigation engine. Figure 5.11 shows the options supported by Google,
AllTheWeb and Altavista’s Web Search. The systems used for intranet search may differ
slightly.

The common elements of search engine query syntax have been adapted and extended for
the navigation engine. In addition to + and - symbols for word inclusion and exclusion, the
following options may be supported :

site All pages are assigned a zero score if they are not within the specified site(s). This
may be a domain or server name or a predefined name specific to each webcase or
organization. The commands host and domain will perform the equivalent tasks.

url The given URL is used as the sole starting point. If many URLs are given, the thread-
count is divided by the number of URLs. This is also the default action for a URL given
without a command.

link All pages have zero score if they do not link to the given page.

language All pages are assigned a zero score if they do not contain some text in the specified
language. RFC1766 defines a Content-Language header tag which can be used by
authors to specify the page’s language(s) (Alvestrand 1995). When this is not available,
it is possible to make a best guess at a page’s language by looking at the frequency of

(13}

common words (Wood 1998). For example “the”, “is”, “a” and “when” would suggest
[P )]

an English text whereas “die”, “ein”, “oder” and “fiir” would suggest a German text.

related All pages are assigned scores determined (in part) by their relationship to a given
page. This can be achieved by taking the n most significant words for the given page and
substituting them into the query. Alternatively, a clustering algorithm could describe
the proximity of pages in advance.

Of these, site, url and link are currently supported.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 132

Command Search Engine | Operation

host AltaVista Finds pages on a given server.

domain AltaVista Finds pages on servers within a given do-
main.

url AltaVista Finds pages with the given text in the
URL of the page.

link Google Finds pages which link to a given URL.

link AltaVista Finds pages which link to a given URL or

site. e.g. link:www.dcs.bbk.ac.uk matches
links to any page on the SCSIS Web site

anchor AltaVista Search for pages with outlinks containing
the given in anchor text.

image AltaVista Finds pages with images having a specific
filename.

text AltaVista Finds pages that contain the specified text

in any part of the page other than an im-
age tag, link, or URL. Pages must contain
word in the body of the text (i.e. ignore
linktext/meta tags).

title AltaVista, Finds pages that contain the specified
word or phrase in the page title

applet AltaVista Finds specified Java applets.

like AltaVista Finds pages similar to or related to the
specified URL.

site Google Search within a site. Similar to Altavista’s
domain option.

related Google Equivalent to Altavista’s 1ike option.

allinurl Google Equivalent to Altavista’s url option.

allintitle Google Equivalent to Altavista’s title option

url.tld AllTheWeb Finds pages within a specified top level do-

main (TLD). e.g. url.tld:fr will find pages
from France.

url.host AllTheWeb Equivalent to Altavista’s domain option.
link.all AllTheWeb Equivalent to Altavista’s 1ink option.
normal.title AllTheWeb Equivalent to Altavista’s title option.
url.all AllTheWeb Equivalent to Altavista’s url option.

normal.titlehead | All'TheWeb Finds pages with the specified word or
phrase in the title or in its head content.
url.domain AllTheWeb Finds pages with the specified word or
phrase anywhere in the domain name.
link.extension AllTheWeb Finds pages linking to files with a given
extension. e.g link.extension:jpeg will find
pages that contain .jpeg images.

Figure 5.11: Advanced query syntax for search engines.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 133
5.6 Improving File-Type Recognition

It has recently become common practice for search engines to index content from pages other
than those written in HTML or plain text. This section attempts to describe techniques for
dealing with some of these types of files.

This is achieved using filters — components which transform documents of one MIME type
to those of another. These are written with a CORBA interface and can be accessed from
anywhere on the local network. Thus they can make use of operating system specific applica-
tions on multiple systems. They all follow the same basic algorithm, which takes a resource
description R, which encapsulates the data and metadata elements and returns a modified
resource description with the new text or HT'ML representation of the data and an updated
MIME-type.

This technique of using filters is not new. Verity claim to index over 250 document formats
using a similar method (Raghhavan 2001). However, since there has been no published work
describing either the algorithm or the required filter programs, it is worthy of discussion.

Algorithm 9 (Filter(R))
begin
if R.mimetype € accepted_mime_types
tempfilel + R.data
run external program
R.data < tempfile2
return R
end if
end.

P NSO WD

Figure 5.12: Algorithm for filtering documents from one mime-type to another using an
external program.

The following file types can be supported using this technique :

PostScript and PDF To handle these formats, two Unix programs, pstotext and pdftotext
are used. It is almost certain that these programs also provide the basis for Google’s
PDF and Postscript support as the output is identical to that shown in the Google cache
(including the bugs!). The PDF or Postscript is converted to plain text which is then
parsed as normal. In order to obtain link information, the plain text parser recognizes
URLs and will treat them as links where appropriate. However, attempts to recognize
local URLs or e-mail addresses in plain text files often identify false positives.

Microsoft Office Microsoft Word documents can be converted to HTML using the program
wvHtml by Dom Lachowicz. The programs x1Html and pptHtml, both written by Steve
Grubb provide the same facilities for Excel spreadsheets and Powerpoint files.

2 Please note that if using the Sun’s Hotspot JVM, it is advisable to compile all programs without debug
due to a known issue with the process handling.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 134

ShockWave Flash The utility swfstrings by Rainer Boehme is distributed as part of the
swftools package and can be used in the same manner as the previous utilities.

Archives Archive files can contain compressed versions of many different files. There are
three ways in which these can be handled. Firstly, a list of the files in the archive can
be extracted in text format. This may seem a weak attempt, but it conserves space and
enables important resource discovery questions to be answered, such as finding patches
for missing files. The second way is to concatenate the text or HTML representations of
all the files in the archive. The third is to generate a fake page with the archive listing
and a servlet which will download the archive and return a specific file from within it.
The text and HTML representations of the files within the archive can then be indexed
making reference to this servlet.

The first two options are supported for Tar, Gzipped Tar (.tar.gz) and Zip archives
and Redhat Package Manager (RPM) and Debian (Deb) packages. File lists can be
obtained from these archives using the Unix commands shown in figure 5.13. Full data
extraction is possible using similar techniques. Packages can also be installed using fake
root filesystems on loopback devices if required.

Archive Type Unix Command

Tar tar tvf filename.tar

Gzipped Tar zcat filename.tar.gz | tar tv
Gzipped Tar (Gnu) tar xvfz filename.tar

Zip / PkZip / WinZip | unzip -1 filename.zip

RPM (RedHat) rpm -gpl filename.rpm

Deb (Debian) dpkg -c filename.deb

Figure 5.13: Unix commands for extracting lists of files from archives.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 135
5.7 Web Page Summaries

Search Engines typically display small summaries, descriptions or extracts of Web pages as
part of their search results. The navigation engine described here is no different in this regard.
Section 6.2 will show how such summaries are incorporated into each of the available user
interfaces.

Descriptions are often given by authors in the meta tags of a site’s pages, but these usually
attempt to describe the full content of the page and, in doing so, fail to show the user’s query
terms in context. Simple extracts are often created by taking the first few sentences or terms
of a document. These also fail to show the query terms in context. Research has shown that
displaying terms in context improves the user’s ability to discriminate between documents
(Drori 2000; Tombros and Sanderson 1998). This is why more advanced search engines use
dynamically created extracts to describe the document and its relevance to the user’s query.
An algorithm for computing such summaries is now described.

The summarizer uses a greedy algorithm which constructs summaries by combining sentences.
Several assumptions were made during its development, which should first be justified:

1. Good summaries are created from important sentences. That summaries must contain
key terms in order to describe the document is held as self-evident. The decision to
include only complete sentences was made both to reduce the search space and to aid
comprehension and is consistent with previous attempts at summarization (Luhn 1958;
Edmunson 1969; Tombros 1997).

2. The importance of a sentence is directly proportional to the importance of its constituent
terms. One could argue that the ordering of these terms has equal significance, in which
case terms may be replaced by n-grams.

3. The importance of a term is directly proportional to the frequency with which that term
occurs in the document. This is the same principle which motivated the tf measure,
and has been used as a core principle in classic summarization algorithms (Luhn 1958).

4. The importance of a summary term in representing a document and allowing the user
to discriminate between relevant and non-relevant documents is inversely proportional
to the number of documents in the corpus which contain that term. This is the same
principle which motivated the idf measure.

5. Sentences which repeat concepts found in other sentences are of little value. Other
algorithms have been developed which attempt to reduce redundancy (Edmunson 1969).
However, none of the algorithms used by search engines appear to remove redundant
content.

6. Query terms are valuable and should be included in the summary (Drori 2000; Tombros
and Sanderson 1998).



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 136

5.7.1 A Summarization Algorithm

The algorithm builds a summary by selecting sentences before arranging them in the order
in which they appear in the original text. It could equally be based upon arbitrary groups of
words, but doing so drastically increases the search space, and removes contextual information.
Sentences are repeatedly selected until certain stopping conditions are met. For example,
until the maximum length of the summary is reached. Sentences are selected based upon the
average score for words within the sentences.

A common criticism of sentence-based summarization techniques is that they produce variable
length summaries. This problem is solved by computing the summary length using different
measures. The general framework of the algorithm allows the length to be specified in any
convenient measure, such as the number of sentences, the number of words, the number of
characters, the number of bytes or the number of pixels. In practice, the length is calculated
using both the number of sentences and the number of characters.

The weight given to each term is proportional to the number of times the word appears in
the document, tf, so that the sentence picked is representative of that document (Baeza-
Yates and Ribeiro-Neto 1999). Increasing weights using link text terms and biasing those
in specific HTML markup tags as described in chapter 3 helps this process (Cutler, Deng,
Maniccam, and Meng 1999). A term’s weight is also proportional to the number of times the
term appears in the query. This implies that sentences selected are those most likely to be
relevant to the user’s information need. The term’s weight is also inversely proportional to the
number of times the term appears in the corpus idf, so that the sentence (and by extension,
the summary) contains good discriminators and inversely proportional to the number of times
that term has already appeared in the summary, so the minimum amount of information is
repeated.

Algorithm 10 (Summarize(D, M))
1. begin

2 S <« split(D)

3 repeat

4. foreach s € S do

5. calcScore(s)

6 end foreach

7 s < pickBestUn flagged()
8 flag(s)

9. summary.add(s)

10.  until |summary| > M

11. return summary

12.  sort summary by position
13. end.

Figure 5.14: Algorithm to Summarize Web Documents

The summarizer (algorithm 10) takes a document, D, and the maximum length of the sum-
mary, M. It takes time in the order O(|S|.M) where |S| is the number sentences in D. The



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 137
following auxillary functions are required by the algorithm:

Split(D) Takes a document, D, and returns it’s component sentences.

calcScore(s) Takes a sentence, s, calculates its score based upon the terms within it, and
stores this value for use with pickBest(). The weight attached to a sentence is given by

B ASK]

score(s) = ﬁ
where tf, is the frequency of term z in the sentence, ¢f, is the frequency of term z in
the query, df; is the frequency of term z in the document collection, sf, is the frequency
of term z in the portion of the summary constructed so far, |s| is the length of s and
ki > 1, ka > 1, ks < 1 and k4 < 1 are constants. The values for sf; and |s| start at
zero and increase with each iteration of the algorithm, whilst the values for k1, k2, k3,
k4, tfz, qfz and df; remain constant.

flag(s) flags the sentence s as being included in the sentence.

pickBestUn flagged() Returns the sentence with the highest score as previously calculated,
from those which have not been previously included.

5.7.2 Examples

The following results show a comparison between the document summaries produced by this
algorithm and those provided by leading search engines Google, Teoma and Ask Jeeves, Lycos
and AllTheWeb. Altavista failed to find any of the documents in question with respect to
our queries.

The first two documents are taken from a list of those found on the World Wide Web Confer-
ence site® with the query “precision recall”. The first document is a paper from the refereed
papers track, entitled “Template Detection via Data Mining and its Applications” (Bar-Yossef
and Rajagopalan 2002)*. The query terms have been highlighted in each case. Teoma and
Google both highlight query terms in their search result pages — the others do not.

Lycos suggested “We formulate and propose the template detection problem, and suggest a
practical solution for it based on counting frequent item sets. We show that the use of
templates is ...” which is simply the start of the body text and doesn’t show any of
the query terms or how the page relates to the IR evaluation metrics concerned.

AllTheWeb suggested “...increases in precision at all levels of recall. Categories and
...improvements in precision across a wide range of recall values. We feel . .. consequently,
reduce precision. In almost all . .. improvements in precision at all recall levels across

.” which shows clearly shows the query terms in context, but the incomplete sentences
leave the user to fill in the missing words.

% http://www2002.0org/
* http://www2002.0org/CDROM /refereed/579/



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 138

Teoma highlights the key phrase “A large overlap indicates both high precision and high
recall”. Ask Jeeves uses the same engine and returned the same results, but strangely
without the keyword highlighting!

[13

Google identifies the same phrase — and repeats it. “... A large overlap indicates both high
precision and high recall. The ... A large overlap indicates both high precision and
high recall. The ...”

In contrast the proposed summarization algorithm returns “We show that applying our
method results in significant improvements in precision across a wide range of recall values.
... The Yahoo! ...All of them belong to a template of the site. ... A large overlap indicates
both high precision and high recall.” which shows two distinct uses of the same terms.

The second document is a poster entitled “Development and Evaluation of the WithAir Mobile
Search Engine” (Kawai, Akamine, Kida, Matsuda, and Fukushima 2002)°. The summariza-
tion algorithm returned the “The precision and recall of regional information classification
were calculated in the same way as those of the focused crawler. Table 1: Performance of i-
mode focused crawler Gathered i-mode pages Precision Recall 1,300,000 99% (1246/1251)”
compared to Google’s result of “...Table 1: Performance of i-mode focused crawler Gath-
ered i-mode pages Precision Recall 1,300,000 99% (1246/1251) 88% (1169/1326) Table 2:
Performance of ...” which highlights one use of the terms, but not the second.

The extract generated from the DTI page of a speech made by Lord Sainsbury of Turville
to the Asian Technology Markets Conference® with respect to the query “american patents”
was “By 1997 the number of doctoral science degrees had risen in Asian universities to 18.5
thousand and 5.5 thousand in American universities ...In the USA it accounted for 20%
of patents granted behind the USA but ahead of both Germany and the UK at” which
compares with:

Google whose description “...In 1989 the number of American visas (temporary work
permits) issued to qualified ...In the USA it accounted for 20% of patents granted,
behind the USA but ahead ...” is very similar but highlights a different instance of the
term “american”.

Lycos which again returns the start of the document with no regard for context or query
terms: “Mr Chairman, ladies and gentlemen. Thank you for your kind invitation to
deliver the keynote address here, at Chatham House, this morning. The Royal Institute
of International ...”

5.7.3 Implementation

The algorithm is implemented within a class SummarizerThread. Multiple documents can
thus be summarized in a multi-threaded environment, controlled by a TrailSummarizer which
iterates through a trailset and assigns summaries as appropriate. The method generateSummary
implements the algorithm described above, whilst the updateScores method refreshes the
scores as given in equation 5.7.1.

5 http://www2002.org/CDROM /poster/102.pdf
5 http://www.dti.gov.uk /ministers/archived /sainsbury210301.html



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 139

As currently implemented, tf,, qf, and df; have been replaced with the formulae given by
Salton and Buckley (Salton and Buckley 1998). logtf appears to perform better than ¢f and
the document normalization is constant for all keywords in the document so does not affect
the results.

An interface MarkedText describes text with highlighted terms, which can be converted to
Strings, HTML or XML. Summaries are returned as SummaryText objects, which implement
this interface. The TrailSummarizer class hides this by providing a single summarize method
which controls the thread pooling and allows multiple summaries to be computed in parallel.
Document terms are loaded from a file at offsets which are specified in a separate file and
loaded a-priori.

5.7.4 Performance Analysis

Experiments were performed to analyse the effects of increasing resources on the time taken
to summarize the documents for trails returned in response to a set of queries taken from the
query logs for the Birkbeck Web site.

Increasing the number of threads to a number greater than the number of CPUs improves
the overall speed of operation. Further increases yield little improvement, as can be seen in
figures 5.15 and 5.16. Increasing the number of open file handles on the pagedata file has a
similar effect, but increasing the number of file handles to excessive numbers can noticably
worsen performance, as can be seen from figure 5.17.

3000

2500

2000

*
1 0 a0%04 0,090 Le0e0, 00,%,%00004 o%0,%,9,
500 - *

Time

1000

500

0 5 10 15 20 25 30 35 40 45
Threads

Figure 5.15: Time taken to load and generate an average summary, given a certain number
of threads.

Increasing the number of documents cached does not seem to have the expected impact,
as can be seen from figure 5.18 This result needs further investigation. However, if the
result is confirmed by subsequent investigation, then it supports the conclusion that memory
resources are better allocated to other tasks, such as increasing the graph sizes in a distributed
environment, increasing search result caches, increasing inverted file caches or increasing
UrlIdentifier caches.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 140

1620

1600

1580

* * *
1560 . .

. * . y =-0.289x + 1542.3
1540 . . N R?=0.0105

* * 4.

*

¢ 3

Time

1520 * o o o

1500 d

1480

1460

1440

0 5 10 15 20 25 30 35 40 45
Threads

Figure 5.16: Time taken to load and generate an average summary, given a certain number
of threads, where the number of threads is greater than one.

2500

.

2000
- . B
g A I ST T I, R I I
@ 1500 u — hd . R
£ "
@
8
5
£
£
s
3
2
2 1000
£
£

500

0
0 5 10 15 20 25 30 35 40 45

Open File Handles

Figure 5.17: Time taken to load and generate an average summary, given a certain number
of open file handles.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 141

6000
. .
. - N - . .
5000 * . .
— 03 - . ¢« v
hd *
NG 5 . —
. PO * . .
.
. *y2.0.0345x + 4889.8 ¢
R®=0.0184

4000
Q
E
£
>
§ 3000
£
£
3
2]

2000

1000

0 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cache Size (documents)

Figure 5.18: Time taken to load and generate an average summary, given a certain number
of documents cached.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 142

Experiments were also made to confirm the hypothesis that for a constant set of parameters,
the algorithm works in linear time in practice. Figure 5.19 shows that there is a strong
correlation between the size of the document (number of words) and the time taken to load
the document. Suprisingly, this is not the same for the time taken to generate the summaries,
as can be seen from figure 5.20. For a document of a given size, the time taken is distributed
normally. The hypothesis can therefore be rejected. External factors have a greater role than
the size of the document in real-life situations.

30000

25000

y=0.221x + 161.78
R® = 0.8547

20000

15000

Time to load (millis)

10000

5000

60000 80000 100000 120000
Words

Figure 5.19: The time taken to load a document correlates strongly with its length.

Experiments were then performed to investigate the overall speed of the implementation and
to identify any bottlenecks in the system. The time taken to summarize each document was
recorded throughout a single run. The most commonly summarized page was the Birkbeck
Library A-Z Index’. This is not particularly suprising as it is a major hub from which
documents matching all categories of information need can be reached very quickly. The
mode, median and mean times to summarize documents were 1, 2 and 18.4 milliseconds
respectively, with the longest document taking 5.6 seconds to summarize. It is hypothesized
that this is again due to garbage collection pauses. Overall the summarization was found to
be at an acceptable speed for supporting the sub-second return of results.

In comparison, the times taken to load the documents were disturbingly high. Again there
was a skewed distribution in the times taken, as would be expected when the distribution of
document sizes is skewed. In the case of times to load documents, a power law distribution was
expected to match the previously recorded power law distribution in document sizes. However,
the data best fits an exponential distribution, as can be seen from figure 5.21. The longest time
taken to load a single document was 27256 milliseconds. The mode, median and mean times
to load the documents were 31, 243 and 939.6 milliseconds, respectively. This is completely
unacceptable for sub-second response times. Further investigation showed over 80% of time
to be spent in the JDK’s readUTF() method. this method was re-implemented, removing

" http://www.bbk.ac.uk/lib/atoz.html



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 143

6000

5000 ¥

4000

3000

weoor | o

Time Taken

2000

y = 0.0098x - 21.49
R® = 0.1491

1000

20000 40000 60000 80000 100000 120000

-1000

Document Length

Figure 5.20: The time taken to generate a summary for a document does not correlate
strongly with its length.

the StringBuffer usage. StringBuffers have already been identified as a major cause of
performance problems in Java (Heydon and Najork 1999b). This improved performance, but
not to an acceptable level. Overall, this highlights a poor choice of document representation,
and a key area for future development.

5.7.5 Titles and Short Titles

Closely related to the problem of computing document summaries is the problem of generating
short titles for page labels in nodes on displayed graphs or trees. The requirement is to produce
a short title (say, 10 characters) which gives the user useful information about a web page.
Labelling the nodes using the full title of the page often leads to a node occupying too much
screen space. A rule based system has been developed to truncate titles, which is based upon
regular expressions. Any string matching a given expression may be substituted by a new
string. The following actions can be performed within this framework:

1. Removing any initial substring common to a node and its parent
2. A stop-list of words to remove (e.g. “the”, “a”, etc.)

3. Substituting in abbreviations and shortened forms (e.g. “approx.”)

The following actions might also be useful but are somewhat drastic, and cannot be performed
with the current system:

1. Remove words according to their ¢f.idf values. Words with low t¢f.idf values are more
likely to be good candidates for removal.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 144

14000

12000

10000

8000

Frequency

6000

4000
y =596.39¢" ¥

R? = 0.9449

2000
A y = 12246x2%7
o R®=0.8974
0 ' '
0 10 20 30 40 50 60 70 80 90 100

Time

Figure 5.21: Distribution in the times taken to load individual documents.

2. Keep capitalized words and attempt to remove other words.



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 145

5.8 Concluding Remarks and Future Work

This chapter has described various aspects of a system for providing efficient, automated trail
discovery. The following chapters will now explore how this technology can be applied to the
fields of Web navigation, join discovery in relational databases and program comprehension.
However, there are several important areas still to be addressed, which will have an impact
in some or all of these areas.

5.8.1 Summaries

The summaries computed are effective for natural text. However, many of the pages on the
web feature large numbers of short phrases, often in lists and tables. Further work is required
to make the summaries more effective in these situations.

In order to evaluate the effectiveness of these summaries in allowing users to descriminate
between relevant and non-relevant documents, the following experiment is proposed. Docu-
ments from the TREC corpus are presented at random as the results of fixed queries. Subjects
should then be asked to mark the documents as non-relevant, relevant or highly relevant with
respect to the query. The better the correlation between the subjects assessments and those
of the NIST assessors, the better the quality of the summaries. The use of TREC data in
the evaluation of computed summaries is discussed in detail in Tombros 1997. An alternative
way to conduct the experiment is to ask users to assess pages based upon the summary then
on the basis of the page’s full text.

5.8.2 Multi-page Search

Search engines display pages of results with the option to display the next or previous n
matching documents. A similar option should be supported to display the next or previous n
trails. Displaying previous results should be fairly easy. If results are cached in an appropriate
format, they may be read back when required. To compute the next n trails, either the trails
from the next n starting points can be returned, or the next n trails can be computed with
the page scores set to zero for all pages in the previous trails. This will increase the likelihood
of new content in the following trails. There is an implicit assumption in this algorithm that
the pth set of trails will only be accessed once the (p — 1)th set has been viewed. Otherwise,
recomputation of all previous results is required. This would be complex and slow. However,
with this restriction, computing the pth set becomes trivial as the kth set can be retrieved
from the cache whenever k < p.

5.8.3 Partial Collection Ranking

Conventional search engines return a ranked list of documents. The list of potentially rel-
evant documents is often extremely long and full rankings will take time in the order of
O (X keywordecoliection cOunt(keyword)). However, users very rarely go beyond the first few
pages of results (Silverstein, Henzinger, Marais, and Moricz 1999; Spink, Jansen, Wolfram,
and Saracevic 2002). It is therefore unneccessary to compute the scores for the pages beyond



CHAPTER 5. ARCHITECTURE OF A NAVIGATION ENGINE 146

those which are displayed in the first instance. The higher computation cost of the few oc-
currences in which later pages are viewed is offset by the saving for the most common events.
The trail finding algorithm works by computing the first set of trails, but still requires a fairly
comprehensive scoring of the document set.

Partial document ranking is a strategy in which only these top documents are scored and
ranked. Wong and Lee’s proposal is to sort the posting list in descending order of tf values.
These lists are then arranged into buckets. At query time, buckets are selected in descending
order of combined ¢ f.idf values. Scores are computed only for those pages in buckets where
there is a possible alteration of the result (Wong and Lee 1993).

Partial document ranking is difficult to implement in the navigation engine due to the need
to determine scores for documents which match few keywords. If the operation of the query
engine is split into two — with the inverted index being used only for selecting starting points
and a separate index being used for the Best Trail algorithm — then the risk is run of several
thousand, or even several tens of thousands of disk accesses, which is orders of magnitudes less
efficient than a full ranking. The algorithm outlined in Wong and Lee could be applied with
lists sorted by the probability of being required, but there is probably a more effective way to
achieve these savings. Until this is achieved, there will be a significant performance penalty
in the IR stage before trail discovery can proceed. It is interesting to note that a previous
system for constructing query-specific guided tours was reported to work best when the only
documents returned were those with scores higher than 30% of the maximum (Guinan and
Smeaton 1992). This may suggest a similar threshold for partial document ranking.

5.8.4 Incremental Crawling and Merging Webcases

Search engine companies need to update their indexes frequently. In order to save bandwidth,
increase coverage and improve results, incremental crawling techniques are used. A subset of
the indexed pages are recrawled. These and newly found pages are indexed and merged with
the master index. In order to apply these techniques to the navigation engine architecture,
the following data structures need to be merged:

‘Web Graphs If the graphs are small enough to fit in main memory this is easy, the graphs
can be loaded in order with the URL IDs converted using the forward and reverse lookup
tables.

MetaData Metadata from multiple sources can be merged using the same techniques.

Inverted Files These are probably best merged at the previous temporary file stage, as the
normalization factors and idf values will change globally with each page.

The Implementation of these strategies is considered a priority for future development.



Part 111

Applications for Trail-Discovery

147



Chapter 6

Navigating the Web

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to.” said the Cat.

“I don’t much care where-" said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—s0 long as I get somewhere,” Alice added as an explanation.

“Oh, you're sure to do that,” said the Cat, “if you only walk long enough.”

The Cheshire Cat, in Alice in Wonderland (Carroll 1865)

I must not fear. Fear is the mind-killer. Fear is the little-death that brings total
obliteration. I will face my fear. I will permit it to pass over me and through me.
And when it has gone past I will turn the inner eye to see its path. Where the
fear has gone there will be nothing. Only I will remain.

Bene Gesserit litany against fear, in Dune (Herbert 1965)

Try not to think of it in terms of right and wrong. She is a guide, Neo. She can
help you to find the path.

Morpheus, in The Matrix (Wachowski and Wachowski 1999)

148



CHAPTER 6. NAVIGATING THE WEB 149
6.1 Introduction

Chapter 3 presented an algorithm for computing memex-like trails on Web-like graphs. Chap-
ter 5 described a navigation engine based around this algorithm, which computes these trails
based upon computed node scores and augments the returned trails with metadata and doc-
ument extracts. This chapter describes how this engine presents trails in Web sites and
presents a comprehensive set of studies evaluating the effectiveness of the system and the
trails produced. The last section explores possibilities for scaling to larger Web-sized corpora
by distributing the indexes, splitting the associated Web graph and merging the results from
multiple sources.

The rest of this chapter is organized as follows:

Section 6.2 presents three user interfaces which can be used to display the trails. The
NavSearch UI provides continuing support and display of results in a tree constructed
by merging trails with common roots. The flat TrailSearch UI is very similar to that
of a traditional search engine. The VisualSearch Ul is a prototype developed using the
GraphViz (Gansner, Koutsofios, North, and Vo 1993) program to presents trails in the
form of a graph.

Section 6.3 presents examples of trails provided by the navigation engine on indexed Web
sites. The examples shown come from the Web sites for UCL!, Birkbeck? and Sleepycat
Software?.

Section 6.4 describes a case study into the use of the navigation engine. Taking the SCSIS
Web site as an example, various problems are analysed along with an examination of
the effectiveness and usefulness of the results to 9 queries taken from the department
search logs.

Section 6.5 discusses Mat-Hassan and Levene’s user study showing how the trail-based
search and navigation engine improves users’ navigation efficiency. After using the
system, 96% of the study’s subjects chose NavSearch over Google and Compass as their
preferred search engine.

Section 6.6 presents an empirical evaluation comparing trails produced by the system to
those authored by human editors. Although the authored trails are of consistently
higher quality, the effort expended in producing them is prohibitive.

Section 6.7 describes a technique which could potentially be used to allow the navigation en-
gine to scale to multi-billion document corpora. The Web graph is split and distributed
with trails computed on each section. New algorithms are presented for merging the
resulting trail sets, allowing large scale deployment.

Section 6.8 highlights the main conclusions which can be drawn from the evaluation sections
and makes suggestions for future work.

! http://www.ucl.ac.uk/
? http://www.bbk.ac.uk/
3 http://www.sleepycat.com/



CHAPTER 6. NAVIGATING THE WEB 150
6.2 Navigation Interfaces

The previous chapters have shown how trails can be found in Web-like graphs. This section
presents three interfaces for presenting such trails.

6.2.1 NavSearch

Continuing support and display of results is important in reminding users of their options.
Pollock and Hockley state that “Search engines should aim to communicate the concept that
searching on the Internet is a process rather than an event” and that during their usabilty
studies “Yahoo was the most popular search engine, largely because it leads users through
the process of browsing” (Pollock and Hockley 1997). Principles such as these provided the
motivation for the Mozilla sidebar, which allows search results and other information to be
kept constantly present in a pane on the left hand side of the browser.

Continuous access to search facilities is equally important. Nielsen states that Web site
authors “should make search available from every page on the site; you cannot predict where
users will be when they decide they are lost” (Nielsen 2001). This philosophy has motivated
many Web page layouts, and the development of tools such as the Google tool bar (Google
2002a).

The default NavSearch interface combines both of these ideas and extends them. The
NavSearch interface includes a navigation toolbar at the top and a navigation tree window
on the left hand side. The navigation tool bar displays both the best trail found with respect
to a users query and a search box allowing the user to enter further queries.

The navigation tree displays a set of trails arranged in a tree-like form by merging trails with
common roots. Roots are combined by extending the techniques described in Wexelbat and
Maes 1999 to accomodate duplicates. Any page on a trail may be brought into the main
window by clicking on its associated hyperlink.

To allow a quicker overview of a page’s key features, a pop-up window with several important
pieces of information appears whenever the user positions the cursor over the link. This
pop-up contains the page’s title, filetype (if not HTML), size, and the summary computed
using the algorithm described in section 5.7. This strategy has been shown to improve users’
understanding. The pop-ups are based on ideas shown in Weinreich and Lamersdorf 2000
and contain many of the same elements. However, these pop-ups are based upon metadata
stored by the system, and do not display in the main page. Hence, they do not require any
proxy to filter the Web pages.

Figure 6.1 shows the first NavSearch interface. This incorporated the same pop-up mechanism
used by Weinreich and Lamersdorf and an expandable tree. Some confusion arose with this
interface. Similarilties between this layout and the document view tree used in Microsoft
Word and Adobe Acrobat led several people to believe either that the interface displayed
trails through a document, instead of a Web site, or that it displayed a hierarchy. NavSearch’s
ability to display links to sections within documents (if given by the link’s authors) supported
these misconceptions. In order to improve the usability, the collapsible tree was replaced by
a fixed, fully-expanded tree with new graphics highlighting the trail with arrows, as shown in
figure 6.4.



CHAPTER 6. NAVIGATING THE WEB

File  Edit Wiew Favortes Tools  Help

< in Science and Technology Studies - Microsoft Internet Explorer

151

Links ”H Address !g‘l http ffreonefnzframeset.jsp

I
J EBack » o=p - @ @ 7l ‘ @Search (] Favarites @Hstury ‘%v = 1% g%
I

Havigationlone @@

advice on purchasing computers
studartt senices in Sdence and Tadhnalagy
150 aperates booking systern for carnputers
it www, bbe o uby educstion'edby

=

{115 Cornputars

EHJ Information Systerms Helpdesk

EHi Infammnation Systerns Helpdask

EHJI The IS Madrtosh computers slso have

[EH) Informiation Systarns Helpdesk
) The rules for namning files are diferert

1) UCL University College London

EHJ Ftp c2n be run fromn rost but not all cornpubers

EHJ There are fewer Madrtosh computers

=

[ Insuring Computers Buying Computers
EHi Buying Comnputers Softare and Camsurnables
EH network is systern of interconneded

EH] Misuse indudes using College cormputers
0 UCL University College London

[EH]) chapter How to Get Help on Using the Computing

=

[ Insuing Carnputers Buying Compubers
EHJ chapter Mational Infarrnation Metwark
EH) Inspec Indesces iberature of physics

EH] network is spstern of interconneded
EH] Devices called rail hubs parforr this
1 Inforrnation Systerns Contacts

EH] Buying Compubars Software and Consurnables

computers

advice on purchasing computers >student services in Science and Technology > ISP operates booking systen for computers

Science and

Technology Studies

University College London

advice on purchasing compulers

rartment services to studer

=

[ why do studerts need crmpubers

EHo why do studertts need cmputers

EHJ firewall probects netwarked cornputers
EHjj UL Gollege Londan University

1 Making cornpirbars work for paopls

EHil The goal of HCI is Geting users inketading

E-Pwhn,- da studerts nead mmDutersI
4

o

_=o 4 ass RIS c ¥
title  Insuring Computers Buving Computers

rank  3rd

URL  http: /A ucl ac uk/UCL-

Infa/Publications/ISHandhook Azh 13 htm
text  Chapter Buping Computers Software and
Conzumables...Buying Computers
Software and Consumables... Insuring
Computers Buying Computers Software
and Corsumables Gerieral
Information... Personal computers PC or
Mac...Portable computers PC or Mac

Jump

1o ...
5TS
main
page;
satt
directory
or staff
contact
details
main
page for
current
Students;
Undergraduate
Tutor
notes
5TS
notes for
guidance;
College
salendar
we

I@ hibtp s frsa,ucl, ac, Ul UCL-Info /Publicstions/1SHandbookeh 13 hem

Figure 6.1:

Local intranet

&l

Results for the query “computers” on the UCL Web site. Whilst the trails are

relevant to the query, some confusion arose with the interface layout and the trails contained
too much redundant information.



CHAPTER 6. NAVIGATING THE WEB 152

Later versions of the interface replaced the pop-up code to allow the pop-ups to move accross
frames without the need for proxying. The delay between moving the mouse over the URL
and the pop-up appearing was also greatly reduced as this was found to be frustrating when
trying to find information, despite being common practice in applications where such idioms
are used to supplement help systems.



CHAPTER 6. NAVIGATING THE WEB 153

6.2.2 TrailSearch

The flat TrailSearch user interface appears very similar to that of a traditional search engine.
Each trail appears sequentially and users can follow any link they choose. Such an interface is
the best choice for introducing new users who are already familiar with search engines to the
ideas of a returned trail. However, it is difficult to see the context of a node or the structure
of a site in such a display and there is inadequate support during the navigation session.

NawSearch | Trailsearch | isualSearch

@ 'avigationZone i

for pitkow in PARC and found 40 pages in 11 trails
Trail >pitkowi@parc.xerox.com

m— pithow@parc. xerox.com

m .com - Okb
Trail >UIR @ PARC: Publications > UIR @ PARC: Publications (By Year) > UIR @ PARC: Publicati (By Project]
- UIR @ PARC: Publications
A Framework for | ion Visualization Spreadsk University of Minnesota .. Results from the
Third Waorld Wide Web User Survey. The Waorld Wide Web Journal 1(1)....Human Factors and the
nterface. Intelligent
2 parc.com/istl) e html - Okt
= UIR @ PARC: P\ (By Year)
A Frarewotk far | Yisualization Spreadsk University of Minnesota....Information Foraging

in Infarmation Access Environments. ACW Conference on Hurman Factors in Software (CHI 95), Denwer,
Colorado 51-58. . Human Factars

http: e parc, camfistl) ts/uirfpub

- UIR i@ PARC: Publications (By Project
Rich Interaction in the Digital Library. Communications of the ACH 38(4): 23-38... Principles for
Information Yigualization Spreadsheete. Computer Graphics and Applications: 30-38... Workspaces
[Abstract] Listings for Project: Contextual
hitpidhwnan2 parc.comfisti/arajects/uirublica

yearfindex. htm| - Okt

ectindes htm - Okb
Trail >UIR (& PARC: icati = UIR (@ PARC: Publicati {By Year) > UIR @ PARC: icati » UIR & PARC: icatil (By Project)
= UIR @ PARC: Publications

[PDF] Web Analysis Yisualization Spreadsheet |n this paper, we present methods in information
visualization that apply 1o the discovery of patterns in World-Wide Weh sites..._[PDF] A Framework for

Informat
tp: 2 nlis b
[ UIR @ PARC: Publ (By Year)
A Framework for Visualization Spr University of Minnesota....Information Foraging

in Information Access Enwironments. ACW Conference on Human Factors in Software (CHI 95), Denwer,
0 51-68... Human Factors

w2 parc.com/istl/ar

= UIR @ PARC: Publications
A Frarewotk for | ion Visualization Spreadst University of Minnesaota....Results frorm the
Third World ¥Wide Web User Survey. The World Wide Web Journal 1(1)... Human Factors and the
Intelligent Interface. Intelligent Interfaces:
htt P2 com/istl)

ml - Okb

jects/u

http: tionsfindex.html - Okb

= UIR @ PARC: Publications (By Project
Rich Interaction in the Digital Library. Communications of the ACH 38(4): 28-38... Principles for
Information Yisualization Spreadsheets. Computer Graphics and Applications: 30-38... Warkspaces =l

Figure 6.2: Results for the query “pitkow” on Xerox PARC’s Web site, presented using the
TrailSearch interface.



CHAPTER 6. NAVIGATING THE WEB 154

6.2.3 VisualSearch

A prototype interface has been developed, using the GraphViz program (Gansner, Koutsofios,
North, and Vo 1993) which displays the results in the form of a graph, where each trail is
indicated by a different colour. The trail set output is simply piped to the clickable image
map generator. Each trail is shown in a different colour on a graph where common nodes are
shown only once. Figure 6.3 shows an example of how the trails would be presented using the
VisualSearch interface for results to the query “oxygen” on the Creoscitex* Web site. The
trails describe the Oxygen scanning application.

Figure 6.3:

pgrades: EverSmart DOT to

oXYgen DOT Solution Creo oftaen DOTDOINELON Gren

oXYgen Version 2.2 olutions for Commercial
{(Mac 05X} Creo Printers Creo

A
oXYgen Scannhing Application
Creo

Questions and answers

for trade
hops and repro houses Creo

Sy

H\“‘\.. -,
B -
Try Before You Buy Creo

Results for the query “oxygen” on the Creoscitex Web site, as they would be

presented using the VisualSearch interface.

* http://www.creo.com/



CHAPTER 6. NAVIGATING THE WEB 155

6.3 Web Site Examples

This section presents examples of the trails provided by the navigation engine in response to
some queries on various Web sites. Many sites were indexed during the development of the
navigation engine, only a small sample of which are represented in this thesis. The examples
chosen are representative of the trails produced by the navigation engine and reflect some of
the problems faced during development.

6.3.1 SleepyCat

Sleepycat Software produces Berkeley DB, a commonly used datastore, used in the devel-
opment of the navigation engine, and in the Stanford WebBase project (Hirai, Raghavan,
Paepcke, and Garcia-Molina 2000). The site consists of around 1 106 pages (see figure 3.10),
many of which document the Berkeley DB libraries. Figure 6.4 shows the results of the query
“Dbt”. A Data Base Thang (DBT) is a simple structure used to represent each element in a
key/data pair.

f ' NavSearch | TraiSearch | visualSearch
@ \avigatonZone  —

Trail> DBT > C Interface » DBoursor=c_put > DB->open » DBT > DB->put

DBT: Key/Data Pairs

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs. Both key and

L9 Dbt data items are represented by the DBT data structure. (The name DBT is a mnemonic for data base
L9 Berkeley DB Tutarial and Refie thang, and was used because no ons cou}d think of a reasonal‘)le nams that wasn't already %n use
2 Keyydats pairs somewhere else.) Key and data byte strings may refer to strings of zero length up to strings of
-aDBT essentially unlimited length. See Database limits for more information.
2 DB->put
Q¢ Interface typedef struet { b
4 DBoursor=c_put void *dataj;
il Release 3.1 DEzput u_int32_t size;
qDBT u_int32_t ulen;
i w_int32_t dlen;
"HDB_)'M w_int32_t doff;
AC Interface u_int3Z_t flags;
2DBT ¥ DBT:

4 DBcursar=c_put

9 DhiMiemoryException In order to ensure compatibility with future releases of Berkeley DB, all fields of the DET structure

£ Dht that are not explicitly set should be initialized to nul bytes before the first time the structure is
9 Berkeley DB Tutonal and Re used. Do this by declaring the structure external or static, or by calling the C library routine
4 Common enars bzero (3) or memset (3).
4 DBT
AC Interface : ;
By default, the flags structure element is expected te be set to 0. In this default case, when the
% DE>set. append recrid application is providing Berksley DE a key or data item to store into the databass, Bsrkelsy DB
“‘gBCTI o expscts the data structure slement to point to a byte string of size bytes. When returning a key/data
e || item to the application, Berkeley DE will store into the data structure element a pointer to a byte
?gac_?r?tﬁrface string of size bytes, and the memory te which the pointer refers will be allocated and managed by
2DBeursare_put Berkeley DB.
0 DB-0pen
& The slements of the DET structure are defined as follows:
Q0B->gat
2DBT )
0C Interface void *data;

9 Secondary indices A pointer to a byte string.

£ DB-associate - ) )
4 B u_int3Z t size; =l

Figure 6.4: Results for the query “Dbt” on the Sleepycat Web site.

Figure 6.5 shows the trails found for the query “Dbt.” The last trail shows the Java classes
relating to the Dbt handling — in particular the documentation for the method Db.get ()
and the classes Dbt and DbMemoryException. In this sense the trails separate the different
language Application Programming Interfaces (APIs) and the context allows developers to
descriminate between C, C++ and Java APIs. Unfortunately, the trails all eventually lead to
the C interface declarations as this is default target for links in the documentation. The suc-



CHAPTER 6. NAVIGATING THE WEB 156

cess of the Sleepycat crawl was inspirational to the development of AutoDoc and AutoCode,
as discussed in chapter 8.



CHAPTER 6. NAVIGATING THE WEB 157

DBT

 Interface

DBCuUrsor=c_put
DB-=open

DBT

DB-z=put

= Dbt
=i Berkeley OB Tutonal and Reference Guide (Wersion: 4.1.25)
“H Key/data pairs
=H DB-=put
=H C Interface
H DBcursor=c_put

-4 Release 3.1: DB=put
-0 DBT
=4 C Interface
<1 DBT
2 DB~ =put
Y4 C Interface
LDBT
A DBcursor=c_put

-4 DbMemoryException
4 Dbt
-4 Berkeley DB Tutorial and Reference Guide (Version: 4,1.25)
& Camman enars
“aDBT
=1 C Interface

4 DB=set_append_recno
“oDBT
-4 C Interface

—a DB-=put
=4 C Interface
=4 DBcursor=c_put
=L DB-=0pen

=L DB-=qget
- DBT
-4 C Interface
Fd Secondary indices
1 DB-associate
-4 DBT
“2C Interface
-4 Db.get
4 Dbt
4 DbMemoryException
-4 Berkeley DB Tutonal and Reference Guide (Wersion: 4.1.25)
4 Retrieving elements from a database
-4 DBT
“4 C Interface

Figure 6.5: Trails found for the query “Dbt” on the Sleepycat Web site.



CHAPTER 6. NAVIGATING THE WEB 158

6.3.2 TUniversity College London

UCL was founded in 1826 and is one of the largest universities in England. The university
is comprised of 70 departments spread over 10 Faculties and Schools, including the Bartlett
Faculty of the Built Environment, the Royal Free and University College Medical School and
the Mullard Space Science Laboratory.

Not suprisingly, the Web site is large, disorganized and covers a wide range of topics. A full
crawl of the ucl. ac.uk domain covers over 1 million pages and is typical of large organizations
where the responsibility for authoring pages is spread between many departments and staff
members. By comparison, Google claim to index only 353 000 of these pages. Coverage such
as this is a penalty that must be paid for using the results from a global search engine in
preference to a locally administered site search.

Figure 6.6 shows the results for the query “Cryptography” on the UCL Web site. The first
two trails show details of public cryptograhy techniques, as taught in the Computer Science
department. Later trails detail related classes and implementations of cryptographic systems.

NavSearch | Tralsesrd) | Uisusisesrch

@ avigationZone By U

Trail> Public Key Cryptagraphy > \What size keye? > Symmetnc Cryptography > What s Cryptography 7

Next: Hetwork leve] solutions Upe A brief Tntroduction to Previous: What age keys? 2
Pratslic: iy Crygtoograghy $
e B Public Key Cryptography
SyriMeme Grpptography
Wikt i= Gryptography Tublie key encryption i= & much slover alrernative to symmecrie cryptography. Ics based upon mechemacical fukctions upon bus
pairs of numbers. For the well-known BSA algorithw, the security comes from the difficulty of factoring large numbers in
24 bref Introd.cton to Crypic Gal 4
ph o ois Fields.
Qwhiat size keysT
2 Symmetric Cryptography
Dwhat is Cryptography Each key iz o pair of keya K and K-l. If a measage is encrypted wsing K then it cen only be decrypted using K-1. If A means
4 Contents the application of the encryption function and fexi is the cleartext, then the follewing all hold teus.
QHow to Implemant 2 Provider fc
£ Appendix A {lext) A K A K —1={lext
2 Java Cryptography Architect
QHow 1o Imperment 2 Brovder
2 dppendi A §
T awa 2 Platiorm SE w131 Clas (test) A K A K # fext
£ Appand &,
9 Java 2 Platform SE v1.3.1: Clas
Lrhppenc: & ¥ S
S Tntemetworing Mutmeds {teet) AK = 1 AK =texl
JPubic key Cryprography
Qwhat size keyst
3 Syrrimetic Cryptograpt a
Q'what is Cryptographn {tect) AR =1AK =1 & dexd
D Java 2 Platform SE v1.3.1: Olas
D append & Important iy, one cemnat derive K from knowledge of X¥-1 or vice versa. This allows the priwery uss of public key technology,
. where one key i= made public and one key remsins secret. This provides a much larger degree of functionality, excending the
2 Appandi & o use of cryprography £o supply suthenticetion snd integrity as well as confidentialicy.
¥ Java 2 Platfem SE v1.3 1 Clg it usi he ¥
- - 2 7 Platform & ETT SecureRand ny the private key which iz only known by you. If it
S ppnty TILE AR - V1A r(.‘lm BE———— S worypeed by you. This then functions to suthenticate the text.
33w O Platform SE vi.3.1; fi 588 Appendin A in the Java Cryprography AP| Sp
a B & for infarmation about standard PRNG algerthm names. provider - the name of the prander,
—!\PPEIEN provider, Returne: the new SecureRlandarm object. Throws function which takes text in and produces a pseudo random
s NoSuchAlgorthmE yraytion hmput text. This is known ae @ kesh function. The hash
RISy W D i ..ll'. ! c/apifjava ke mezzage digest, which iz then sncrypted using the public
4 - — ives the , they run the hash function over the data to
regenerate the message digest. They decrypt using the public key, and if the digests macch, then they know that che messags
«|| wa= xealiy sent by the purported sender, and that che message wes not interfered with - the integricy of the wessage hes been =
4l o 4] J of

Figure 6.6: Results for the query “Cryptography” on the University College London Web
site.



CHAPTER 6. NAVIGATING THE WEB 159

6.3.3 Birkbeck

Figure 6.7 shows the trails produced on the Birkbeck site for the query “hotel manage-
ment”. Presumably the query was posed by a prospective student looking for courses in hotel
management similar to those provided by Shannon College® or Thames Valley University®.
Unfortunately, no such course is run by Birkbeck. However, the context provided by the
trails in figure 6.7 allows the user to quickly locate the management school course lists and
determine the courses which best match the student’s requirements.

® http://www.shannoncollege.com/
5 http://www.tvu.ac.uk/



CHAPTER 6. NAVIGATING THE WEB

lee paper 3rd February 1999
courses
The Business of Football
/
<8 Links
“d The Department of Management Homepage
=i Untitled Document
-4 Schoal Courses
4 Courses
‘4 School of Management 2 Organizational Psychology Staff
A0r Peter Trim
“d School of Management 2: Crganizational Psychology Staff
2 Dr Linda Trenberth
‘4 Department of Management Staff
2 School of Management 2: Organizational Psychology Staff
2 Chris Mabey

4 Workplace Rearganisation, HRM and Corporate Performance
| -4 Department of Management : Postgraduate Courses

-4 Corporate Governance Ethics

~8 Undergraduate Prograrmimes
=2 B4 in Management B4 in Accounting and Management
~2 School of Management & Organizational Psychology Staff
=8 The Departrmernt of Management Homepage
~& Schoal Courses
4 School of Management & Organizational Psychology Staff
= Chiris Mabey

2 web forum: AGAINST Excelence Dr, Colin Evans

8 warking Party on Teaching and Leaming at Birkbeck Callege WoPaTal Home page and members

4 The Department of Management Homepage
'“0 Department of Management Staff
8 Schoal Courses
“8 Undergraduate Programmes
A The Department of Management Homepage
“8 Department of Management © Postgraduate Courses
“Z Management in the Public Sector
-5/
=4 Birkbeck Staff Development Group home page
~2 Birkbeck Management Development and Team Developrent
=4 Improving Tearn Effectivensss
=8 Improving Team Effectivensss

4 Management Development at Birkbeck: & Modular Prograrmme
A Didogues home page. Birkbeck Academic Staff Development
8 Sean Hami's reflection on Dialogue 3) academics and libranans
=4 The Department of Management Homepage
-4 Schoal of Management 8 Organizational Psychology Staff
“& School of Management & Organizational Psychology Staff
~H Chris Mabey
& Schoal Courses

-d Subject Review Handbook final draft
@ Birkbeck Subject Review: The Qa4 Subject Review Handbook (TQa)
-4 Birkbeck Subject Review (TOA) home page
-4 pirkbeck Subject Review: The Qas Subject Review Handbaook (TQe)
-4 The Departrent of Management Hormepage
"1 Schoal of Management & Organizational Psychology Staff
‘2 School of Management & Organizational Psychology Staff
=8 Chris Mabey
‘4 School of Management 2 Organizational Psychology Staff
=8 Dr Linda Trenberth
‘8 School Courses

=8 The Qa4 Subject Review Handbook, Part 10 Annex D The Preparatory Meeting Agenda
-8 Birkbeck Subject Peview (TQA) home page
-4 Birkbeck Subject Review Countdown for 2000 2001 round
=] The Departrent of Management Homepage
‘4 School of Management 2 Organizational Psychology Staff
Q0r Linda Trenberth
‘4 School Courses
2 School of Management & Organizational Psychology Staff
A Chris Mabey

2 'Who in finance
a)

Figure 6.7: Trails found for the query “hotel management” on the BBK site.

160



CHAPTER 6. NAVIGATING THE WEB 161

6.4 Case Study — SCSIS

This section describes a case study into the use of the navigation engine. The SCSIS Web
site has been chosen as an example of how the navigation engine can be used to provide site
search facilities. The problems encountered are discussed, along with an examination of the
effectiveness and usefulness of the results to 9 queries taken from the department search logs.

The crawl of the department’s Web site yielded a graph with a total of 6 863 nodes and 15 055
links covering 2 448 fully indexed pages. The remaining nodes correspond to external URLs
or inaccessible pages. The average outdegree of the indexed pages was 6.15 (see figure 3.10).

Nine queries were taken from a recent log file. The results of the queries are presented in
alphabetical order:

accomodation The results shown in figure 6.8 highlight three major problems. Firstly,
neither the Web site authors nor the end-user seem to be able to spell accommodation
(two “m”s) correctly or consistently. Research has shown that this is a common problem
(Silverstein, Henzinger, Marais, and Moricz 1999). Stemming (Porter 1980) and n-gram
based indexing can help reduce these errors, but cannot eliminate them and introduce
different complexities. A better solution is that used by Google, which is to prompt the
user for alternative suggestions.

When given the correct query, the results are substantially more useful, as can be seen
in figure 6.9. Trails cover the accommodation facilities provided in halls of residence and
local hotels for the International Conference on Database Theory (ICDT) conference
and associated Web dynamics workshop hosted by the school of computer science in
January 2001.

Secondly, there is a problem with keeping Web site material and indexes current. The
information in the trails, whilst the most relevant and pertinent on the site and clearly
associated with the conference by the structure of the trails, is over 2 years old. However,
the location of the Hotels and halls of residence is unlikely to have changed in that
time. Identifying which resources will be effected by changes over time is a difficult
topic worthy of future research.

Finally, there is the problem of generating short titles (see also section 5.7). Many
different pages are shown in the trails shown in figure 6.8, all of which relate to the
Web Dynamics workshop and all of them contain the keyword, “accomodation”. Un-
fortunately there is no means to discriminate between them. The authors of the pages
made no changes in the hl or title tags by which to identify the differences. The most
appropriate title is contained in a later h3 tag.

andrew The results in figure 6.10 are useful in that they highlight the home pages of Andrew
Bielinski, Andrew Watkins and Andrew Mair. They are also informative in that the
structure of related pages shows Andrew Bielinski to be a research student under the su-
pervision of Mark Levene and that Andrew Mair is associated with the BSc Information
Systems and Management course.

Two problems remain. Firstly, that a description of Andrew Watkin’s page is miss-
ing, along with an appropriate title. This is because the pages are excluded by the



CHAPTER 6. NAVIGATING THE WEB

15 webDyn 2001
WehDyn 2001
WebDyn 2001

i WebDyn 2001
4 WebDyn 2001
-& WebDyn 2001

=] YWebDyn 2001
d WebDyn 2001
=& YWebDyn 2001

2 ICOT 2001
=8 wehDyn 2001
4 WehDyn 2001
8 WebDyn 2001
“2 WebDyn 2001

=& regaccom. html

=4 WebDwn 2001
=& WehDyn 2001
=8 WebDyn 2001
i WebDyn 2001
=4 WebDyn 2001
-a WebDyn 2001

=& YWebDyn 2001
=4 \WehDyn 2001
=i YWebDyn 2001

=4 WebDyn 2001
4 WebDyn 2001
“8 \WehDyn 2001

-4 regaccom. hitml

Figure 6.8: Trails found for the query “accomodation” on the SCSIS site.

162



CHAPTER 6. NAVIGATING THE WEB 163

& Accormmodation in student hall
=8 Accommodation
-4 ICOT Prograrm
=B ICDT History

-4 Accommodation
“81COT Program
-4 Registration
2 Accommodation
& Accommodation in student hall

& Accomimodation in student hall
A Accommodation

'.;'I ICODT 2001
-1 Accommuodation
=8 Accommodation in student hall

-4 Bursanes for Young Researchers
“1 Accommodation
-H Accormimodation in student hall

ICDT 2001 Call for Papers
Accomimodation
Accormmodation in student hal
ICDT Histary

-8 Bursanes for Young Researchers
4 Accormmodation
2 ICDT 2001 Call for Papers
4 Accormmodation
“8 Accommodation in studert hal

L ICOT Program
0 Accommodation in student hal
4 Accommodation
0 Accommodation in student bal

-2 London Information
=4 Accommodation
-H Accommodation in student hal
L ICOT History
-& Reqistration

Figure 6.9: Trails found for the query “accommodation” on the SCSIS site.



CHAPTER 6. NAVIGATING THE WEB 164

robots. txt file (Koster 1994). Without close co-operation with the Web site adminis-
trators, no search facility will ever be fully effective. Secondly, the link between rstudent-
person.asp?name=Dbielinski and bielinski is missing due to the robot following current
best-practice and ignoring CGI-based pages.

-4 Andrew Bielinski

Fd Mark Levene's Home Page
~& Andrew Bielinski

=4 rgstrnair.htm

4 BSC Information Systems and Management
4 mgstmair.htm

-4 BSc Information Systems and Management
a rmgstrair.hitm

=8 rstudentperson.asp

=4 Research Students in Computer Science and Information Systems
-A refudentperson,asp

-4 Physical Layer
8 Long Distance Communication

- Computer Metworking
4 Phiysical Layer
-4 Long Distance Cormmunication

Figure 6.10: Trails found for the query “andrew” on the SCSIS site.

application form Figure 6.11 shows that some useful trails are found for this query. The
first trail identifies the enquiry/application form for the MSc E-Commerce course. The
second trail identifies the application form required for the undergraduate program.
The third trail represents the start of the problems. The pages entitled “IT APPLI-
CATIONS” are distinct but differ only by the inclusion of an irrelevant “assessment”
section. This small difference causes the creation of 2 separate trails. This can be fixed
with the application of near duplicate detection as described in section 3.5 (Broder 2000;
Shivakumar and Garcia-Molina 1999).

More serious is that the engine finds neither the form for the foundation degrees nor
the form for the postgraduate programme although both are within 2 clicks of the
pages given. Further analysis shows that some serious problems still remain with the
information retrieval techniques. The IR metrics used are significantly simpler, but
slightly flawed when compared with the current state of the art.

birkbol programmes Figure 6.12 shows details of undergradute courses and research de-
grees (first and second trails respectively) and an FAQ and guide for new students on
the MSC course (sixth and eighth trails respectively). The results are promising, but
the short trails fails to show much structure and the choice of query again highlights
the failure of users to construct meaningful queries.

c++ notes Figure 6.13 shows that the query “c++ notes” produces by far the worst results



CHAPTER 6. NAVIGATING THE WEB 165

MSc Ecommerce { Technology)
Enquiry Form
..'_.] IT APPLICATIONS
& ugfomm2003, pdf

-2 IT APPLICATIONS
& ugform2003. pdf

= Diploma in IT Applications
& Enquiry Form

FE IT APPLICATIONS
=l ugform2003. pdf

"-E_.] MSC Computing Science fulltime Fag)
=4 Enguiry Form

i MSC Computing Science parttime FAC
=& Enguiry Form

FUIT APPLICATIONS Assessment FAQ'S
t QIT APPLICATIONS
=8 ugform2003. pdf

~&l [T APPLICATIONS
8 ugform2003, pdf

=] [T APPLICATIONS Assessiment
FRIT APPLICATIONS
-8 ugform2003. pdf

\ & IT APPLICATIONS
-2 ugformm2003.pdf

Figure 6.11: Trails found for the query “application form” on the SCSIS site.



CHAPTER 6. NAVIGATING THE WEB 166

T APPLICATIONS
IT APPLUCATIONS

i Research Degrees in Computer Science and Information Systems
=& Alexandra Poulovassilis

-d Arpdhzppt3.ppt
=L IT APPLICATIONS
Q1T APPLICATIONS

A personal. pdf
rd SmpdhzpptdE. ppt
=E MSC Computing Science fulltime FAQ
& Janet Bilinge SCSIS bio page

-ﬁl‘%c;urses in Computer Science and Information Systems
I

A newstudents.pdf
4 itappsassessment.pdf
-H ECommercei@Birkbeck

Figure 6.12: Trails found for the query “birkbol programmes” on the SCSIS site.

of any of those taken from the logs. The ability of the navigation engine to construct
trails through lecture notes on various subjects is rendered useless by the inability of
the parser to recognise the letters c++ as a single term.

exam papers The user posing this query was almost certainly a student looking for past
papers for revision. Figure 6.14 shows that the first two trails provide exactly that.
The second trail shows that the papers relate to the module “Developing Internet Ap-
plications”. There are suprisingly few past papers available on the SCSIS site and the
remaining trails for this query shows details relating to arrangements for sitting exams
for that summer. The context provided by the trails makes it easier to distinguish
between the two types of result.

Mark Mark Levene’s page appears continually throughout the top trails in the context of
the Web dynamics workshop (which he organized), the Database and Web Technologies
Group (of which he is a key member), his research students (Gaurav and Azy, whose
page is entitled “Welcome to my homepage”) and his co-authors on several papers
(Alexandra Poulovassilis and George Roussos). However, the page never appears at the
start of the first trail, as can be seen in figure 6.15. The probabilistic nature of the Best
Trail algorithm causes this page to change occassionally but never to Mark’s home page.
This strange behaviour is despite the IR algorithm scoring that page higher and is a
disappointing result which raises questions over the suitability of the scoring functions
used.

As with the results for the query “andrew”, neither the graph nor the resulting trails
contains the link from staffperson.asp?name=mark to ‘mark, due to non-indexing of
CGlI-style pages. This behaviour needs to be customized on a per-webcase basis.

Links are also present on each page in the SCSIS site to the home page, news, courses,
research, seminars, etc. All these are constructed using javascript, which the robot



CHAPTER 6. NAVIGATING THE WEB

Index of /~ian/images/Limages/_notes
W5 FTP.LOG

=4 Indes of f~iandmages/IHimages,_notes
=EAWS FTR.LOG

~d Index of /~ian/mages/Pimages/_notes
-G WS FTP.LOG

j Index of /~iandmages/Umages
& Index of f~iandmagesUmagess_notes
“HWS FTR.LOG

=4 Keith Ghson's MSEC and POEC notes
0 Unititled

~i Motes example {complete)
- Notes example {part 3)
=4 Extensible Style Language
O Motes example {part 2)
=4 Extensibla Style Language
=& Example: Notes with table of contents
“4 Notes example (part 1)

=4 Erample: Notes with table of contents
=i Extensible Style Language
~4 Motes example (part 1)
=i Motes example {part 2)
=4 Extensible Style Language
=& Motes example {(complete)
=i Motes example {part 3}
=4 Motes example {complete)
—4 Extensible Style Language
=i Extensible Style Language

~4 Extensible Style Language
=d Erample: NMotes with table of contents
=i Motes example (part 1}

‘U Motes example (cormplete)
=4 Extensible Style Language
L notes example (part 1)
=i Notes example (part 2)
L Notes example (part 1)
“H Example: Notes with table of contents
-& Extensible Style Language
-4 Extensible Style Language

=2 M.Sc Computing Science, Metworks Home Page
=& Extensible Markup Language
=8 Diploma in IT Applications, =ML
S0 Wby HML?

Figure 6.13: Trails found for the query “c++ notes” on the SCSIS site.

167



CHAPTER 6. NAVIGATING THE WEB 168

-{tgast Exam Papers
exam2001, pdf

i Developing Intemet Applications
~il Past Exam Papers
& examz001, pdf

-0 MSc Computing Science parttime FAD
&/

FAMSC course amangerments 2002
-8 Motes for students of the MSc Computing Science on exams and coursework
H Motes for students of the MSc Computing Science on projects

=4 Msc Computing Science fulltime FaQ
a/

=8 Solutions to Exercises

-d coursebook0z . pdf

4 BSc Information Systems Management Bulletin Board 2002/2003
d BSc Information Systems Management Bulletin Board
" exarms_ug.shiml

dbbkcs-99-11.ps

Figure 6.14: Trails found for the query “exam papers” on the SCSIS site.

will not recognize. Similar behaviour found with the output of Content Management
Systems (CMSs) such as Vignette or Documentum. The long-term solution to this
problem is to tie the trail engine into a better IR system and offer interface to the main
CMSs. For the current research prototype this is not feasible, but would be essential if
the navigation engine was to be developed fully.

neural network The first trail shown in figure 6.16 shows the course “Artificial Intelligence
& Neural Networks”, as taught by Chris Christodoulou. The course is an introduction
to a neural networks, genetic algorithms and clustering methods, but is given the title
“BSc ISM Option Expert Systems”, despite being unrelated to expert systems.

Chris Christodoulou is the SCSIS expert on nueral networks. The second trail leads from
his home page to the only one of his papers, “A Spiking Neuron Model: Applications
and Learning” linked to from his home page. Subsequent trails show the activities of
the SCSIS research group relating to neural networks and various relevant papers.

xml The first two trails in figure 6.17 give brief tours of an XML tutorial, always linking
to external resources containing a great deal of relevant information. The third trail
provides an explanation of XML namespaces connected to hub with lots of XML refer-
ences. The use of Potential Gain in the starting point selection encourages such hubs to
be chosen. The fourth trail details the use and history of XML as a markup language
and it’s relationship to SGML. Subsequent trails describe the Information Technology
(IT) applications module on XML. This information is highly relevant for new students
but is once again masked by problems generating short titles.

The conclusion that can be drawn from this analysis is that the trails found by the navigation



CHAPTER 6. NAVIGATING THE WEB

WebDyn 2002
Mark Levene's Home Page
Database and Web Technologies Group
staffperson.asp

~d Geonge Foussos
“8 Mark Leveng's Home Page
- Database and VWeb Technologes Group
=4 staffperson.asp

4 B.5c. ISM ECommerce
—d George Roussos
=& Mark Levene's Home Page
= YWelcome to my homepage
=i Mark Levene's Home Page
=&l Database and YWeh Technologies Group
= staffperson.asp

= \WebDyn 2001
=] Alexandra Poulovassilis
-4 Database and Web Technologies Group
- staffperson.asp

-d M.Levene
~d Mark Lewvene's Home Page
=i Gauray Malik
- Mark Levene's Home Page
=4 Welcome to my homepage
=4 Mark Levene's Home Page

=4 Database and YWeb Technologies Group
4 staftperson.asp

el ICDT 2001 Call for Papers

=& Past Exarm Questions
=8 20001 10mark gquestion

& Javascnpt Laboratory Session

-9 BSc Informatian Systems Management Bulletin Board

Figure 6.15: Trails found for the query “mark” on the SCSIS site.

169



CHAPTER 6. NAVIGATING THE WEB 170

-%ESE: IS Option Expert Systems
iChris's Home Page

d Chiris's Horme Page
=& nn_ppmt.pdf

-8/

=8 Research in Computer Science and Information Systems
=i Research in Computer Science and Information Systems
“A Chris's Home Page

-4 M5 course amangements 2002
=8 mschook.html

= end.pdf

=E dewatl,ps
4 dexass, pdf
-4 Publications

=8 chZ, pdf

- SCAMS: Structure Charactensation and Automation for Mass Spectrometry

Figure 6.16: Trails found for the query “neural network” on the SCSIS site.

engine are useful, but the overall utility of the system is being limited by problems with related
modules. However, to truly test the effectiveness of the system requires an independent test
with real users.



CHAPTER 6. NAVIGATING THE WEB

Links to more information

”-i'il_gizensihle Markup Language (<ML)
wml

8 applications of XML
-d extensible Markup Language (ML)
8 WML Overview
= extensible Markup Language (<ML
=4 Link=s to more information
i xml

=& Resources for CSMINT
=& xrmins. htm

4 Diploma in IT Applications, =ML
=& Markup Languages
.

=4 I158Ward Met's Electronic Commerce Course Page

-/

W IT APPLICATIONS
| IT APPLICATIONS
W 1T APPLICATIONS
=JIT APPLICATIONS
-d cplansm.pdf
| [T APPLICATIONS
WIT APPLICATIONS

:] IT APPLICATIONS
=2 cplansm.pdf

=d [T APPLICATIONS
=2 IT APPLUCATIONS
= cplanxm.pdf
FAIT APPUCATIONS Coursework 200203
=H [T APPLICATIONS

=8 [T APPLICATIONS
=& cplansxm.pdf

=& [T APPLICATIONS
=4 [T APPLICATIONS
“RIT APPLICATIONS
8 cplanzm.pdf

Figure 6.17: Trails found for the query “xml” on the SCSIS site.

171



CHAPTER 6. NAVIGATING THE WEB 172

6.5 Mat-Hassan and Levene’s User Study

In order to assess the usefulness of the NavSearch interface and prove the hypothesis that “a
trail-based search and navigation engine improves users’ navigation efficiency”, Mat-Hassan
and Levene conducted a usability study. The results they obtained from the study revealed
that users of the navigation engine performed better in solving the question set posed than
users of a conventional search engine (Mat-Hassan and Levene 2001).

Users were given two sets of information seeking tasks to complete based upon the pages in
UCL’s official Web site. Three different search tools were evaluated, one of which was the
navigation engine with the NavSearch interface. The others were Compass (UCL’s official site
search engine) and Google’s university search of UCL” Subjects were asked to answer two sets
of questions, devised to be at the same level of difficulty, using either NavSearch and Google
or NavSearch and Compass. The question sets were formulated so that all the questions fell
within one of five types : fact finding, judgement questions, comparison of fact, comparison
of judgement and general navigational questions.

Most of the subjects assigned to use Google were more optimistic about the initial likeli-
hood of completing the task, whilst those subjects assigned to use NavSearch were initially
more reserved and pessimistic. None of the subjects had had any previous experience with
NavSearch and they received no training, although they were encouraged to read the help
page, and were given two minutes to familiarize themselves with the interface, during which
questions could be asked. Familiarity was the main factor in favour of Google’s linear interface
model. Mat-Hassan and Levene reported that users “found the interface quite intimidating”
considering it a “radical shift” from the conventional layout and format of results.

The interfaces were assessed according to users’ completion time, the number of clicks em-
ployed, the number of correct answers found by the subjects and the confidence and satis-
faction levels expressed by the subjects. When asked to compare NavSearch with Google or
Compass, subjects expressed a much higher degree of confidence in their ability to complete
future tasks, a higher degree of satisfaction with NavSearch with regards to the completion
of tasks and a higher degree of satisfaction completion with regard to navigation and the
display of results. Users stated that “showing link relationship helps” and that the system
provided “useful trails” which gave “an indication of the pages already looked at and the
pages that might be useful to look at”. 96% of the study’s subjects chose NavSearch over
Google and Compass as their preferred search engine. Mat-Hassan and Levene concluded that
“the proposed user interface does indeed provide effective information retrieval assistance”.

7 http:/ /www.google.com /univ/ucl



CHAPTER 6. NAVIGATING THE WEB 173
6.6 Comparative Testing

The previous two sections have shown the utility and potential of the navigation engine.
However, it would be interesting to discover to what degree the trails correspond to the ideal
trails which can be found by traversal of the Web site. This section compares the trails
found with the navigation engine with those authored by human subjects. Although it is
acknowledged that authored trails will neither be complete nor impartial, they can be expected
to be of a consistently higher quality than those constructed with existing information retrieval
and trail-finding technology.

The purpose of the study is twofold. Firstly, to ascertain the extent of the gap between
the human authored and machine constructed trails. Secondly, to identify common features
of authored trails which should be incorporated into any future generation of trail-finding
system.

6.6.1 Evaluation Philosophy

Eight characteristics have been discussed in previous research that may be applicable to the
study (Hawking, Craswell, Bailey, and Griffiths 2001; Gordon and Pathak 1999). These
characteristics, as taken from Hawking et al. 2001, are:

1. Searches should be motivated by genuine user need.

2. If a search intermediary is employed, the primary searcher’s information need should
be as fully captured as possible and transmitted in full to the intermediary.

3. A large number of search topics must be used.
4. Most major search engines should be included.

5. The most effective combination of specific features of each search engine should be
exploited. I.e. the queries submitted to the engines need not be the same.

6. Relevance judgements must be made by the individual who needs the information.
7. Experiments should be well designed and conducted.

8. The search topics should represent the range of information needs both with respect to
subject and to type of results wanted.

Of these the seventh should be a characteristic of any scientific research and the second is
irrelevant as no intermediary is used. The first, third and eighth of these criteria are achieved
by taking examples from the Birkbeck University of London Web site (see figure 3.10). Queries
were taken from log data for the Birkbeck search engine. In total, 18 queries were used, which
is less than the number used in either Hawking or Gordon’s studies but more than were used
in Leighton’s study (Hawking, Craswell, Bailey, and Griffiths 2001; Gordon and Pathak 1999;
Leighton and Srivastava 1999).

The sixth criteria is not met, as this would severely limit the scope of the evaluation, as
noted by Hawking. Three subjects were asked to author trails, based upon queries taken



CHAPTER 6. NAVIGATING THE WEB 174

from three sets of log data8. In keeping with Hawking’s proposals, the subjects were asked to
author trails for queries where they could assess “what it was that the inquirer was actually
seeking”. Full details of all the trails are presented, including authored and constructed trails.
The subjects were not asked to assess the relevance of these trails, or of the individual pages
within them. As this thesis describes the only trail-based retrieval system available, any
attempt at a comparison with existing systems would be meaningless. The fourth criteria is
also not met for this reason.

The fifth criteria is also not met, in keeping with Hawking’s observations and with previous
studies showing that advanced search features are not commonly used (Hawking, Craswell,
Bailey, and Griffiths 2001; Silverstein, Henzinger, Marais, and Moricz 1999; Jansen, Spink,
and Saracevic 1998).

In addition the following restrictions were placed on the trail authors:

1. All pages should be on the Birkbeck site or one link away from it. This is in keeping
with the abilities of a Web site search system.

2. All trails must be valid with respect to the Birkbeck Web site. This is consistent with
the definition of a trail used within this thesis.

3. The navigation engine should not be used to help construct the trails nor to provide
any other assistance during the experiment. Any other tools, including the Birkbeck
site search and Google were permissible. This prevented unintentional bias in favour of
the results returned by the engine.

6.6.2 Analysis of Queries

Figure 6.18 shows a summary of the queries chosen, along with the interpretation given to
them by the trail authors. Figure 6.19 shows some basic statistics about the authored trails.
As with the previous case study, the results and conclusions drawn from each query will be
presented in turn:

access course The authored trails contain information on courses concerning Microsoft Ac-
cess. The computed trails, shown in figure 6.20 show pages concerning access for disabled
students. This implies that the IR techniques used are inadequate. It is impossible for
the computer to fully comprehend the meaning of queries, but it is interesting to note
that neither conjuctive queries, phrase matching or proximity would improve the results
in this instance. The authored trails were:

1. (a) http://www.bbk.ac.uk/ccs/

b) http://www.bbk.ac.uk/ccs/courses/menu.htm

(c) http://www.bbk.ac.uk/ccs/docs/docs.htm#notes
)

(d) http://www.bbk.ac.uk/ccs/docs/5-69.pdf

8 Kevin, http://www.bbk.ac.uk/analog/search /searchlist01Jun03.html
Azy, http://www.bbk.ac.uk/analog/search /searchlist08Jun03.html
Bryn, http://www.bbk.ac.uk/analog/search /searchlist18May03.html



CHAPTER 6. NAVIGATING THE WEB

175

Query

Description or requirements

aCCess course

birbbeck logo design
design postgraduate

exam papers
international students

writing up phd
a student gym
beginners painting

bsc programming

dept of philosphy
distance learning

mba
access 97

project management

part time
research grants history
social

ba history

Information on any Microsoft Access course.

Guidelines on how to use BBK logo such as size, position and
permission

Design courses for postgraduate. It is not clear what kind of design
though: Media? Architecture? Industrial? Interior?

A list of all past years exam papers.

Information for international students particularly relating to
visas, fees, courses and accommodation.

Guidelines or information on writing up a thesis.

Is there a gym that can be used by students at Birkbeck?

is there a beginners painting course at Birkbeck? If so, what are
the details.

Is there an undergraduate course that will teach computer pro-
gramming?

Information about the department of Philosophy at Birkbeck.
Can courses at Birkbeck be completed via distance learning? or:
What distance learning support is there at Birkbeck?

Is there a Masters in Business Administration (MBA) course at
Birkbeck? If so, what are the details?

Should address the facilities for using, or the use of Access '97 at
Birkbeck.

Should address the project management process at Birkbeck, in-
formation on courses in project management or information on the
subject of project management.

Should cover either the particulars of part time study at Birkbeck
or the general topic of part time study.

Should include either research grants in the subject of history, or
the history of research grants for the whole of Birkbeck.

Should could contain pages regarding social life at Birkbeck or
pages relating to social sciences.

Web pages relating to studying for a BA in History at Birkbeck
or pages giving options for further study for those already holding
that degree.

Figure 6.18: Queries used as the basis for authoring trails.




CHAPTER 6. NAVIGATING THE WEB 176

Query Trails | Nodes | Distinct pages
access course 2 7 5
birbbeck logo design 0 0 0
design postgraduate 3 9 9
exam papers 2 7 5
international students 1 2 2
writing up phd 3 ) 5
a student gym 3 ) 5
beginners painting 3 9 5
bsc programming 4 17 8
dept of philosphy 3 8 7
distance learning 7 17 17
mba 3 10 8
access 97 3 10 8
project management 2 14 14
part time 1 20 20
research grants history 1 4 4
social 1 4 3
ba history 1 9 2
AVERAGE 24 8.7 7.1

Figure 6.19: Statistics concerning the trails authored for the queries shown in figure 6.18.

2. (a) http://www.bbk.ac.uk/ccs/
(b) http://www.bbk.ac.uk/ccs/docs/ittraining.html
(c) http://www.bbk.ac.uk/ccs/docs/ittraining. html#courses

It is interesting to note the use of the local or anchor links (those ending with #foo)
in the second trail. There are 17 URLs in the authored trails containing anchors and 6
of the 43 authored trails (over 10%) contain links within a single page. This suggests
that the importance of such links has been understimated in previous research. It is
already acknowledged that many portal pages can be split into self-contained sections
(Anderson and Horvitz 2002), and this finding suggests the same applies to other pages.
Should future studies support this finding, then it would suggest that the strategy of
treating all such URLs as equivalent is flawed. It would further suggest that a new IR
engine should be developed which identifies linked components within each page.

birbbeck logo design Strangely, the author could find no pages with which to construct
trails, despite using the Birkbeck search and manual navigation from the home page,
the registry pages and the “About Birkbeck” pages. The navigation engine produced
the trails shown in figure 6.21 which show that pages with such guidelines do exist but
are difficult to locate. The experience of the trail authors has shown that manually
authoring trails is difficult and time-consuming. This fact brings into question the
notion of Bush’s Trail-blazers (Bush 1945) as human agents and may explain the low
adoption rate of previous trail authoring systems.

Ironically, the page with the guidelines for use of the logo in printed works is shown in



CHAPTER 6. NAVIGATING THE WEB 177

Disability at Birkbeck {Birkbeck College, University of London)
disabilityaccess.htm

& GIScOnline Course Topics
4 GIScOnline Resources
~d indes, hitml

8 GIScOnline Programime Handbook
o indes bt

=8 GIScOnline Prospectus
=2 GI5cOnline Accepted Student Informmation
=8 GIScOnline Course Tapics
= indes, html

=4 Birkbeck Colege Library Resources for Chemistry
=4 Birkbeck Callege Ubrary Chemistry Joumals
=& Birkebck College Lbrary Electronic Joumals Joumal of # 1S
=4 Birkbeck Colege Ubrary Electronic Joumals 1 Joumal of L
=] Birkbeck Colege Ubrary Electronic Joumals C

|-l GIScOnline Resources
[-8 GIScOnline Programme Handbook
—al indes, bl

8 indes. bt

=E GISCOnline Mew Stiudents Information
-8 GIScOnline Course Topics
=H index.html

=4 GIScOnline Pesources
=0 GIScOnine Accepted Student Information
=8 GIScOnline Programme Handbook
=L indes.htmi

=& MSc in GISc by Distance Leaming (GIScOnline) Frequently Asked Questions
=8 GIScOnline Resources

=& GIScOnline Programme Handbook
= index. hitml

=i index. bl

Figure 6.20: Trails found for the query “access course” on the Birkbeck site.



CHAPTER 6. NAVIGATING THE WEB 178

the trail, but is inaccessible to most users of the site, as it is available only to members
of staff.

design postgraduate The user posing this query was probably interested in a postgraduate
course concerning some form of design. However, it is unclear what type of design the
user was most interested in. The trail author suggested media design, architecture,
industrial design or interior design as possible answers, but there are undoubtably more.
It is important for such ambiguous queries that the results still allow the user to identify
possible answers are give guidance for reformulating the query. The following trails,
suggested by the author, perform this to a limited degree:

http://www.bbk.ac.uk/study/pg2003/index.html
http://www.bbk.ac.uk/hafvm/
http://www.bbk.ac.uk/hafvm/courses.html
http://www.bbk.ac.uk/study /pg2003 /histart/arthisdma.html

http://www.bbk.ac.uk/academic.html#fce
http://www.bbk.ac.uk/fce/

http://www.bbk.ac.uk/study /fce/

http://www.bbk.ac.uk/study /fce/mediastudies/idxmediastudies.html
http://www.bbk.ac.uk/study /fce/mediastudies/webd.html

o=
~ o~ o~
o v o

]

w
TN~ TS TN/~
Qo T W

N’ N’ N’ e N’ N’ e N’ N

—
D

In contrast, the navigation engine produced those shown in figure 6.22, which show
pages on post-graduate courses which happen to mention design issues. The system’s
reliance on keyword-based retrieval means that the full semantics are not captured.

exam papers The author believed that, as with the example in the SCSIS case study, the
query was posed by a student looking for a list of past papers for revision. The authored
trails (shown below) detail pages on the Birkbeck Electronic Library, as do the trails
produced by the navigation engine, as can be seen from the results in figure 6.23. The
trails produced by the navigation engine each cover a separate subject area.

1. (a) http://www.bbk.ac.uk/lib/
(b) http://www.bbk.ac.uk/lib/eresources.html
c) http://bel.bbk.ac.uk/bel2/
2.

GG

http://www.bbk.ac.uk/lib/info.html
http://www.bbk.ac.uk/lib/guide5.html
http://bel.bbk.ac.uk/bel2/

—

C

)
)
)
) http://www.bbk.ac.uk/lib/
)
)
d)

—

international students Whilst looking for relevant information on visas, fees, courses and
accommodation, the trail author could only find sufficient information of relevance to
construct the following single trail:

1. (a) http://www.bbk.ac.uk/study/index.html
(b) http://www.bbk.ac.uk/study/international/index.htm



CHAPTER 6.

NAVIGATING THE WEB

MNew Birkbeck Web Logos

4. Design Issues (The Birkbeck web Maintainers Handbook)

7. HTML Issues (The Birkbeck Web Maintainers Handbook)

4. Design Issues (The Birkbeck YWeb Maintainers Handbook)
Mews Birkbeck Web Logos

quidelines. il

k81 9-32,pdf

8 Mewr Birkbeck web Logos
=8 The Birkbeck Web Maintainers Handbook Index Page
““41 4. Design Issues (The Birkbeck 'YWeb Maintainers Handbook)
= Mew Birkbeck \Web Logos
21 guidelines. htm

=8 guidelines. kit

2 4, Design Issues (The Birkbeck \Web Maintainers Handbook’)

4 5. Management/Maintenance Issues (The Birkbeck Web Maintainers Handbaok)
“0 4, Desigh Issues (The Bikkbeck \Weh Maintainers Handbook'
') The Birkbeck Web Maintainers Handbook Index Page
=& Mew Birkbeck \Web Logos
&1 2, Content Issues (The Birkbeck Web Maintainers Handbook)
“d 4, Design Issues (The Bikbeck Wweb Maintainers Handbook
& Mew Birkbeck Web Logos
& guidelines, hitrml

=4 Extemal Relations (Birkbeck, University of London)

=2 guidelines bt

‘.ZJ Mlail Trches:

=4 [ccp4bb]: BM14 Logo
-d [copdbb]: final reminder for CCP4 stwk

:.l PCG/SCHMP Logo

i Homepage of the Physical Crystallography Group

=2 B2SEF.POF

4 Charrical Crystallography Group
<& CHED Rt

A Mail Thread Inde:x:

0 [copabb]: BMI14 Logo
= [copdbb]! lsgkab
4 [copdbb]; lsgkab
=4 [copdbb]: BM14 Logo
i [copdbb]: final reminder for CCP4 stwk

=4 Mews of people associated with Crystallography

Figure 6.21:

=4 Information about people as=ociated with Brtish Crystalography
=4 Dorothy's Meeting
=4 INDEx TO CRYSTALLOGRAPHY MNEWS
=& Contents of Crystallography Mews Mo 53 June 95
=41 Design a logo for Glasgow 59
. :J IMDEx T CRYSTALLOGRAPHY MNEWS
=4 Contents of Crystallography Mews MNo.54 Sep 95

Trails found for the query “birbbeck logo design” on the Birkbeck site.

179



CHAPTER 6. NAVIGATING THE WEB 180

. MaA /Postgraduate Diploma/Postgraduate Certificate in Lifelong Leaming 2002 [Birkbeck, University of London]
incles.htrml

<8 MPhil/PhD History of Art 2002 [Birkbeck, University of London]
“8 index. bt

‘4 Postgraduate Diploma in Geographical Information and Policy Analysis 2002 [Birkbeck, University of London]
2 inces. bl

=2 M3c Chernical Research 2002 [Birkbeck, University of London]
-2 index. hitml

-2 School of Geography Courses Undergraduate and Postgraduate Course Descriptions, Lecture Notes, Reading Lists, Assignments and Exarm Papers
4 The School of Geography Studying
=2 indes:. htrrl

A The School of Geography Mews and Events
4 The School of Geography Studying
—& indes.hitml

& The School of Geography Postgraduate Diploma in Geographic Information and Policy Analysis
=] The School of Geography Studying
<& index.htral

-4 postgraduatehandbookD203 . pdf
2 h.pipe@bbk. ac.uk

2 Studying at Birkbeck (Birkbeck, University of London)
4 requirements. htrl

-4 LIBRARIES FOR ART HISTORY BOOKS:
./
4 poguid02. pof

Figure 6.22: Trails found for the query “design postgraduate” on the Birkbeck site.

In contrast the navigation engine produced the trails shown in figure 6.24, which cover
much of the needed information but contain very little content specifically for overseas
students.

writing up phd The authored trails (shown below) provide details on regulations and guide-
lines for PhD student covering writing up and submission. The trails shown in figure 6.25
were found by the navigation engine and are less relevant, covering aspects of general
writing not related to PhD theses. In a university setting, all three of the query terms
might be candidates for use as stop words.

It is interesting to note that the last two trails both consisted of singleton trails (trails
with only one page). It total, only three singleton trails were generated by the authors.

1. (
(

a student gym Birkbeck college does not have a student gym. However, the University
of London Union (ULU)? does. The three authored trails (shown below) explain this.
The first shows a link to ULU from the Birkbeck page covering aspects of “London
Life”. The link is broken, but the author surmises that the search should be able
to work out that ULU is the place to look. The last two trails contain documents
(undergraduateguide.pdf and inductionl newstudents.pdf) which say that ULU has a

? http://www.ulu.lon.ac.uk/



CHAPTER 6. NAVIGATING THE WEB

|- PPS exam papers
More exam papers
Firal MUD session

- Birkbeck College Library Resources for Economics
g,
{8 Birkbeck Colege Librany Resources for Politics Sociollogy
2/
{4 Birkbeck Colege Library Resources for Chemistry
b >

(=4 Birkbeck College Library Resources for Earth Sciences
-0 Birkbeck College Library Resources for Crystallography
{4 Birkbeck Colege Library Resources for Biology
{=21 Birkbeck Callege Library Resources for Psychology

i /

d More exam papers
= Final MUD session
-8 Mare exam papers
L PPS exam papers

-4 Birkbeck College Library AZ Index of the \Web site

i Birkbeck College Ubrary Resaurces for Computer Science
a/

Figure 6.23: Trails found for the query “exam papers” on the Birkbeck site.

181



CHAPTER 6. NAVIGATING THE WEB 182

GIScOnline Course Topics

GIScOnline Mew Students Information

GIScOnline Accepted Student Infonmation

Course Schedule

GIScOnline Dissertations

GIScOnline Programme Handbook

The Registry [Birkbeck, University of London]
stuindes, shirml

=4 GIScOnline Resources
“8 GIScOnline Dissertations
=4 GIScOnline Accepted Student Information
~8 GIScOnline Programme Handbook
=8 GIScOnine New Students Infommation

-4 Birkbeck College Library 42 Index of the Web site
=4 Birkbeck College Library Resources for Economics
-/
1= GIScOnline Programme Handbaoaok
2 GIScOnline Mew Students Information
0 GIScOnine Accepted Student Information

2 GIScOnline Resources
8 Course Schedule
FRGIScOnine Accepted Student Information
01 GIScOnline Mew Students Information

-8 GIScOnline Dissertations
=2 GIScOnline Neww Students Information
4 GIScOrline Accepted Student Infonmation

=8 GIScOnline Accepted Student Infonmation
=4 MSE In GISe by Distance Leaming (GIScOnline) Frequently Asked Questions
=8 GIScOnline New Students Information
=4 GIScOnline and GISc Mews, and GIScOnline Bulletins
“8 Course Schedule
=8 GIScOniine Dissertations
=l GIScOnline Programime Handbook

=8 GIScOnine and Birkbeck Colege Contacts for the MSc in GISc Programme
=i GIScOnline Mew Students Information
-4 Geographical Information Science (GISc) COnline
0 GIScOnline Accepted Student Information
=4 Course Schedule

4 GIScOnling Prospectus
=4 GIScOnline Accepted Student Information
A GIScOnline Mew Students Information

=4 GIScOnline Examinations
-2 GIScOnline Course Topics
=i Course Scheduls
8 GIScOnline Mew Students Information
=2 GIScOnline Accepted Student Information

=& GIScOnline Mew Students Information
=4 GIScOnline Course Topics
~4 Course Schedules
=4 GIScOnline Dissertations
=4 GIScOnline Accepted Student Information
= GIScOnline Resources

Figure 6.24: Trails found for the query “international students” on the Birkbeck site.



CHAPTER 6. NAVIGATING THE WEB

.'-ﬁgpanish and Latin American Studies
indles:, bt

- Creative Writing © Accredited Courses
i idwcreawnt. html

4 Creative Wiiting : Understanding Your Audience (Monresidential Summer School}
= idwcreawnt.html

=4 sppendices of the YWoPoTal report on a Teaching Leaming Strateqgy for Birkbeck
=& working Party on Teaching and Leaming at Birkbeck College YWoPoTal Home page and members
=2 spplied Linguistics
4 Applied Linguistics
=4 Applied Linguistics
=2 Applied Linguistics
=2 WoPoTal mailout: Promoting students' leaming
=4 French Departrment Research Interests
=@ phd .htm

{0 B4 English, Birkbeck
=8 BA English Course Units 200203
=8 Creative Writing 1
=4 idxcreawnt.himl
~d Black British Writing
= BA English Course Units 200203
=& Creative Writing 11
il idscreawnt. bl
=8 postgraduatehandbook0203 . pdf
=4 Literature in English (CertificateDiploma)
“H Uterature: Accredited Courses
“4 Literature in English {Certificate/Diploma)
=4 Uifelong Leaming (MPhilPhCO
=2 Literature in English (Certificate/Diploma)
2l Victoran Studies {Certificate,/Diploma)
=& Appendices of the WoPoTal report on a Teaching Leaming Strategy for Birkbeck, LOCAL ACCESS OMLY
=8 The full MWoPoTal report on a Teaching Leaming Strategy for Birkbeck. LOCAL ACCESS OMLY

0 hbkoz. pdf

Figure 6.25: Trails found for the query “writing up phd” on the Birkbeck site.

183



CHAPTER 6. NAVIGATING THE WEB 184

gym. The first page in the second trail puts the second page in the context of the
Geography dept.

1. (a) http://www.bbk.ac.uk/lsp/london.htm

- (a)
(b) http://www.ulu.ucl.ac.uk/
2. (a) http://www.bbk.ac.uk/geog/study.html
(b) http://www.bbk.ac.uk/geog/study/guides/undergraduateguide.pdf
- (a)

3. (a) http://www.dcs.bbk.ac.uk/itapps/studenthandbook/inductionl_newstudents.pdf

In contrast the trails shown in figure 6.26 highlight the computer’s inability to rea-
son in this manner. The poor quality of results is an inevitable consequence of an
“Al-complete” problem (Howe 1993). The term Al-complete denotes, by analogy with
‘NP-complete’, a problem which requires the synthesis of a human-level intelligence
to generate a perfect answer. It is impossible for a computer to fully synthesize the
intelligence used by a human author in generating trails.

beginners painting The trail author surmised that the person who posed the query was
intending the question “is there a beginner’s painting course at Birkbeck?”. This is an
interesting case as the answer the searcher really wants is “no”. There is no such course
available at Birkbeck. There is not even an art course or department which could be
considered a close match. The closest offering would be a “history of art” course. The
trail author acknowledged that it was “hard to say what combination of pages says
“no” most clearly”. It is possible that no trails at all might be the best result as no
page positively answers the query. However, failure to return any results is obviously
ambiguous. The trail author proposed the following trails:

http://www.bbk.ac.uk/index.shtml
http://www.bbk.ac.uk/study/index.html
http://www.bbk.ac.uk/foundation/foundation.html
http://www.bbk.ac.uk/foundation/Subjects.html
http://www.bbk.ac.uk/index.shtml
http://www.bbk.ac.uk/study/index.html

http://www.bbk.ac.uk/index.shtml
http://www.bbk.ac.uk/study /index.html
http://www.bbk.ac.uk/study/ug2003/index.html

=
—~ o~
oo

—
o a

=3

i
—~ o~
)

[N

N N

= &
i S N i

—
o

By showing the information for foundation degrees the first trail matches the concept
of a “beginner’s” course. The information on such degrees shows that painting is not
an option. Although the second trail is also a prefix to the other trails, it is nonetheless
useful in its own right. The last page has a pull-down list of course titles. The searcher
can see from this that there is no painting course. The list of courses in the third trail
also shows no painting course. Figure 6.27 shows the trails returned by the navigation
engine which highlight the computer’s inability to reason about how best to express a

negative result.



CHAPTER 6. NAVIGATING THE WEB

-4 Weird Science
=4 undergraduateguide. pdf
=8 pgstudyguide.pdf
A Appled Linguistics
- Applied Unguistics
8 &pplied Linguistics
=1 spplied Linguistics
=4 Applied Linguistics
=4 Applied Linguistics
=4 Applied Linguistics
=& applied Lnguistics
=4 Applied Linguistics
b0 Mail Thread Index
= [ccpdbh]: Can 1 find a zinc in a haystack?
“HRe: [copdbb]: Can I find & ainc in a haystack?
=2 Re: [cocpdbb]: Can1find a zinc in a haystack?
= Maill Indes
< [copdbb]: Can I find a zine in a haystack?
~dRe: [copdbb] Canfind a zinc in a haystack?
“ARe [copdbb]: CanIfind a zinc in a haystack?
“Re: [copdbb] Can I find a zinc in a haystack?
-HRe: [copdbb]: Canl find a zinc in a haystack?
A Re: [copdbb]: Can I find a zinc in a haystack?
=4 [copdbb]: CanIfind a zinc in a haystack?
< Pe: [copdbb]: Can I find a zinc in a haystack?
=4 GISconline Pesources
8 GIScOnline Prospectus
=2 GIScOnline Examinations
8 GIScOnline Programme Handboaok
=4 GIScOrline Dissertations

=4 GIScOnline Programme Handbook
=4 GIScOnline Fesources

=0 GIScOnline Accepted Student Information
=] GIScOnine Programme Handbook
-8 GIScOnline Resources
=3 GIScOnline Prospectus
=8 GIScOnline Dissertations

Figure 6.26: Trails found for the query “a student gym” on the Birkbeck site

185



CHAPTER 6. NAVIGATING THE WEB

Beginners'/Preparatory/ Intermediate German 2002
Postgraduate Languages and Linguistics Courses 2002 Entry
MPhlPHD Applied Lnguistics 2002
Ma History of Wisual Culture 2002

=8 The Analysis of Beauty by Wiliarm Hogarth
-4 The Analysis of Beauty by Willam Hogarth
“L Hogarth's Analysis of Beauty
“H Hogarth's Analysis of Beauty

2 The analysis of Beauty by Wiliam Hogarth
=i The snalysis of Beauty by Willam Hogarth
“8 The analysis of Beauty by Wiliam Hogarth
=4 The Analysis of Beauty by Wiliam Hogarth
“Ei Hogarth's analysis of Beauty
-B Hogarth's Analysis of Beauty
A Hogarth's Analysis of Beauty
-2 The analysis of Beauty by Wiliam Hogarth
‘A Hogarth's Analysis of Beauty
=8 The analysis of Beauty by Wiliam Hogarth

=& The Analysis of Beauty by Wiliam Hogarth
4 The &nalysis of Beauty by Wiliam Hogarth
=4 The Analysis of Beauty by Wiliam Hogarth
i Hogarth's Analysis of Beauty
“BHogarth's Analysis of Beauty
& Hogarth's Analysis of Beauty
& The analysis of Beauty by Wiliam Hogarth

=8 The Analysis of Beauty by Willam Hogarth
4 The &nalysis of Beauty by Willam Hogarth
“0 Hogarth's Analysis of Beauty
A Hogarth's Analysis of Beauty
8 Hogarth's analysis of Beauty
@ The analysis of Beauty by Wiliam Hogarth

A The Analysis of Beauty by Willarm Hogarth
12 The analysis of Beauty by Wiliam Hogarth
8 The analysis of Beauty by \Wiliam Hogarth
0 The analysis of Beauty by Wiliam Hogarth
=] Hogarth's Analysis of Beauty
“Z Hogarth's Analysis of Beauty
“H Hogarth's Analysis of Beauty
A The analysis of Beauty by Wilam Hogarth

=8 The Analysis of Beauty by Willam Hogarth
=4 The Analysis of Beauty by \Willam Hogarth
=8 The Analysis of Beauty by Wiliam Hogarth
=4 Hogarth's Analysis of Beauty
“8 Hogarth's Analysis of Beauty
= Hogarth's snalysis of Beauty
“0 The Analysis of Beauty by Wiliarm Hogarth

=8 The Analysis of Beauty by Wiliam Hogarth
4 The Analysis of Beauty by Willam Hogarth
& The analysis of Beauty by Wiliam Hogarth
&l Hogarth's Analysis of Beauty
& Hogarth's Analysis of Beauty
“H Hogarth's Analysis of Beauty
~8 The Analysis of Beauty by Wiliam Hogarth

= The Analysis of Beauty by Willarm Hogarth
=4 The Analysis of Beauty by Willam Hogarth
“Q The Analysis of Beauty by Wiliam Hogarth
“d Hogarth's Analysis of Beauty
~E Hogarth's snalysis of Beauty
=8 Hogarth's snalysis of Beauty
~8 The Analysis of Beauty by Wiliam Hogarth

=8 The Analysis of Beauty by Wiliam Hogarth
-4 The analysis of Beauty by Willam Hogarth
8 The Analysis of Beauty by Wiliam Hogarth
=L The analysis of Beauty by Wiliam Hogarth
-8 The analysis of Beauty by Wiliam Hogarth
& Hogarth's &nalysis of Beauty
-8 Hogarth's Analysis of Beauty
‘A Hogarth's Analysis of Beauty
8 The Analysis of Beauty by Willam Hogarth

2 The Analysis of Beauty by Willam Hogarth
“Q The analysis of Beauty by Wiliam Hogarth
4 The analysis of Beauty by Willam Hogarth
8] Hogarth's analysis of Beauty
& Hogarth's Analysis of Beauty
=2 Hnnarth's Analesis nf Peaty

Figure 6.27: Trails found for the query “beginners painting” on the Birkbeck site.

186



CHAPTER 6. NAVIGATING THE WEB 187

bsc programming It is probable that the searcher was after an undergraduate course that
would teach computer programming. The following authored trails show SCSIS courses
which do exactly that:

1.

a) http://www.dcs.bbk.ac.uk/

b) http://www.dcs.bbk.ac.uk/courses/

(c) http://www.dcs.bbk.ac.uk/courses/ism/

(d) http://www.dcs.bbk.ac.uk/courses/ism/ism.html
(a) http://www.dcs.bbk.ac.uk/

(b) http://www.dcs.bbk.ac.uk/courses/

c) http://www.dcs.bbk.ac.uk/courses/ism/

(a)
(b)
)
)
)
)
()
(d) http://www.bbk.ac.uk/study/ug2003/compsci/infosysbsc.html
(a) http://www.bbk.ac.uk
(b)
)
)
)
)
)
)
)

b) http://www.bbk.ac.uk/study/index.html
(c) http://www.bbk.ac.uk/study/ug2003/index.html
(d
(
(

http://www.bbk.ac.uk/study/ug2003/compsci/infosysbsc.html
a) http://www.bbk.ac.uk

b) http://www.bbk.ac.uk/academic.html

(c) http://www.dcs.bbk.ac.uk/

(d) http://www.dcs.bbk.ac.uk/courses/

(e) http://www.dcs.bbk.ac.uk/courses/ism/

The computed trails shown in figure 6.28 show details of computer science and physics
courses. The physics courses teach computer programming and word processing along-
side the expected subjects such as Nuclei and Elementary Particles, Cosmology and
Quantum Mechanics. Because there are so many courses teaching computer program-
ming run by the Physics department, the trails dominate those describing the SCSIS
courses, although the latter are probably more relevant.

dept of philosphy This query supports the previous findings on the inability of users to
spell and type consistently and accurately. The authored trails clearly show information
about the department of philosophy, whilst the computed trails do not (below and
figure 6.29). Although still not perfect, the results do improve when the correct query
terms are used (figure 6.30).

a section of info. on the department)

3. (a) http://www.bbk.ac.uk/study/ug2003/

(b) http://www.bbk.ac.uk/study/ug2003/philosophy/philba.htm]



CHAPTER 6. NAVIGATING THE WEB

BSc Physics 2002

BSc Physical Sciences 2002

BSc Analytical Chermistry/Chemistry 2002
Certificate in Biochemical Sciences 2002
BSc Biochemical Sciences 2002

BSc Biological Sciences 2002

=il BSc Biochemical Sciences 2002
-4 BSc Analytical Cheristry/Chermistry 2002
~& Certificate in Chernistry 2002
-4 BSc Analytical ChermistryCheristry 2002
-4 BSc Physical Sciences 2002
-0 BSc Geology 2002
-4 BSc Environmental Gealogy 2002
-2 BSc Physical Sciences 2002
- BSc Analytical Chermistry/Chemistry 2002
-4 BSc Biochermical Sciences 2002
‘0 BSc Molecular Biology 2002
-8 BSc Biological Sciences 2002

8 BSc Information Systems and Management 2002
—A B4 Classics,/Classical Studies 2002
8 advanced Diploma in Chemistry 2002
4 Advanced Certificate in Chemistry 2002
“ABSc Analytical Chermistry/Chemistry 2002
-4 BSc Biochemical Sciences 2002
4 BSc Bidlogical Sciences 2002
‘A Certificate of Continuing Education in Biology 2002
\<1 BSc Biocherrical Sciences 2002
-4 BSc Analytical Chemistry/Chermistry 2002
-0 Certificate in Chemistry 2002
-4 Certificate in Biochemical Sciences 2002
-2 BSc Analytical Chermistry/Cherristry 2002
-4 BSc Physical Sciences 2002
-8 BSc Analytical Chernistry/Chemistry 2002
-4 BSc Biochemical Sciences 2002
-0 BSc Biological Sciences 2002
“d BSc Malecular Biology 2002

=4 Foundation Degree in Information Technalogy 2002
“81BSc Information Systems and Management 2002
8 Ba Management 2002
-8 BSc Statistics and Management 2002
-4 BSc Statistics and Economics 2002
i BSc Mathematics and Statistics 2002

-8 MSc course arrangements 2002
=0 mschook. htrl
=2 BSc IS M Assignment Receipt Index
=i BSc Information Systems Management Horme Page
8 COMPUTER SYSTEMS
=11 BSc Information Systems Management Mot et Created Page

-4l coursebookD2. pf
= BSc Inforrmation Systems Management Home Page
=4 COMPUTER SYSTEMS

-8 BSc ISM Option Software Prograrmimimg 2 and Languages  Programiming
=& BSc Information Systems and Management
|8 Dr Jenrifer Piesse
—8 Undergraduate Programmes
“H Department of Mathermatics and Statistics: BSc Statistics and Managerment
Departrment of Mathematics and Statistics: BSc Statistics and Economics
8 Departrent of Mathematics and Statistics: BSc Mathematics and Statistics
=4 Dr Peter Trim
~H School Courses
“& Undergraduate Programmes
=@ Department of Mathematics and Statistics: BSc Statistics and Management
—8 Departrnent of Mathematics and Statistics: BSc Statistics and Econamics
=i Departrnent of Mathematics and Statistics: BSc Mathematics and Statistics

Figure 6.28: Trails found for the query “bsc programming” on the Birkbeck site.

188



CHAPTER 6. NAVIGATING THE WEB 189

6 79DEC.PDF
Principles of Protein Structure Homepage
4
-4 Appendices of the WoPoTal report on a Teaching Leaming Strategy for Birkkbeck
4 Waorking Party on Teaching and Leaming at Bikkbeck College WoPaTal Home page and mermbers
e :n] /
“d Links for the WoPoTal report on a Teaching Leaming Strategy for Birkbeck
8 The full WoPoTal report on a Teaching Leaming Strategy for Birkbeck
4 Appendices of the YWoPoTal report on a Teaching Leaming Strategy for Birkbeck
8 Towards a Teaching and Leaming Strateqy for Bifkbeck Colege

FEMal Tndex
“HRe: 5 value outside range
e

=4 81N, PDF
=il Mews of people associated with Crystallography

-4 Mobel Prize Winners
= Ohituary Clifford Shul

-4 Birkbeck College Library Resources for Computer Science
La,

=8 Pensions Institute: links to other web sites
=i/
=4 Pensions Institute: links to other web sites (by country)

=4 B2SEP.POF

L0 77I0M. POF

Figure 6.29: Trails found for the query “dept of philosphy” on the Birkbeck site.



CHAPTER 6. NAVIGATING THE WEB 190

-4 Appendices of the WoPoTal report on a Teaching Learming Strate gy for Birkbeck
WoPoTal maillout: Promoting students' leaming

7

2 Working Party on Teaching and Leaming at Birkbeck Colege WoPaTal Home page and members
& :l/
=2 Appendices of the \WoPoTal report on a Teaching Leaming Strategy for Birkbeck, LOCAL ACCESS CNLY
=4 The full WaoPoTal report on 3 Teaching Leaming Strategy for Birkbeck, LOCAL ACCESS CMLY
4 Towards a Teaching and Leaming Strategy for Birkbeck College, LOCAL ACCESS OMLY
=& working Party on Teaching and Leaming at Birkbeck College \WoPaTal Home page and members
—u/
L Towards a Teaching and Leaming Strategy for Birkkbeck College. LOCAL ACCESS COMNLY
“4 Birkbeck scadermic Staff Development home page
=8 Academic staff development at Birkbeck: Third Annual report 199359
g/
4 Intercollegiate Lecture Timetable 20012002 [Phiosophy]
=4 Intercollegiate. pdf

=& The full WoPoTal report on a Teaching Learming Strateqgy for Birkkbeck
8 Towards a Teaching and Leaming Strategy for Birkbeck College
=8 Working Party on Teaching and Leaming at Birkbeck College WoPoTal Home page and members
=4y
=d Links for the WoPoTal report on a Teaching Leaming Strategy for Birkbeck
=& Working Party on Teaching and Leaming at Birkbeck College WoPoTal Home page and members
- :] /
-4 Birkbeck College
2/
& Handbook for B.A, Students Years 24 [Philosophiy]
Loy
=& handbook 1. pdf
- philosophy .3Philosophy

Figure 6.30: Trails found for the query “dept of philosophy” on the Birkbeck site.



CHAPTER 6. NAVIGATING THE WEB 191

distance learning The computed trails in figure 6.31 are dominated by the pages on Ge-
ography and Geographical Information Science (GISc) courses. A comprehensive set of
short trails was authored to show the level of distance learning support available for
many subjects:

1. (
(

mba The first two authored trails describe the MBA and “Mini MBA” courses. The last trail
describes the MSc Finance course - a viable alternative to an MBA for many people. The
last document states that the course aims to “avoid the cookbook treatment common
in MBA or less academic masters programmes”.

The computed trails, shown in figure 6.32 cover similar ground except for not identifying
the MSc Finance course as a potential alternative. This is probably desirable in the
general case. Anecdotal evidence has suggested that users of conventional search engines
are often frustrated if sponsored links and advertisements for competetive products take
an overly prominent position in the search results.



CHAPTER 6. NAVIGATING THE WEB

Teaching and Leaming Methods in Higher Education: 2 gimpse of the future
Page Not Found status 404 error
Student Intranet Home Page
Is.btrnl

g Birkheck Academic Staff Developrment home page
= ¥eb forum: AGAINST Excellence Dr. Colin Evans
=4 Working Party on Teaching and Leaming at Birkbeck College WoPoTal Home page and members
4 Working Party on Teaching and Leaming at Birkbeck College WoPaTal Projects 2000
=4 Towards a Teaching and Leaming Strategy for Birkbeck College, LOCAL ACCESS OMLY
=8 Towards a Teaching and Leaming Strategy for Birkbeck College, LOCAL ACCESS OMLY
ay

4 Mick Farmer's Distance Leaming Page

(=4 Teaching and Learming Methods in Higher Education: 2 glimpse of the future
2 Birkbeck Academic Staff Development home page
4 Acadermic staff development at Birkbeck: Third Annual report 199899
2 Wweb forum: AGAINST Excellence Dr. Colin Evans
-4 Birkbeck \Web Forum on Leaming and Teaching: an introduction
QST of all Bikbeck Web Fora on Leaming and Teaching
g Web forurm: AGAINST Excellence Dr, Calin Evans
@ Working Party on Teaching and Learming at Birkbeck Callege WoPoTal Home page and members
=8 Towsards 3 Teaching and Learming Strategy for Bikbeck College, LOCAL ACCESS OMLY
J Towards 3 Teaching and Leaming Strategy for Brkbeck College. LOCAL ACCESS ONLY
Y
-2 Towards a Teaching and Leaming Strategy for Bikbeck Calege
=2 Appendices of the WoPoTal report on a Teaching  Learning Strategy for Birkbeck
=& Links for the WoPoTal report on a Teaching Leaming Strategy for Birkbeck
=i Tawards a Teaching and Leaming Strateqy for Birkbeck College
=2 Working Party on Teaching and Leaming at Birkbeck College WoPoTal Home page and members
=8 Working Party on Teaching and Leaming at Birkbeck Callege \WoPoTal Projects 2000
4 Towards a Teaching and Leaming Strategy for Birkbeck Colege. LOCAL ACCESS OMLY
=2 Towards 2 Teaching and Leaming Strateqy for Birkbeck College, LOCAL ACCESS OMLY
as
-8 Towards a Teaching and Leaming Strategy for Bikbeck College, LOCAL ACCESS OMLY
-4 Appendices of the YWoPoTal report on a Teaching Leaming Strategy for Birkbeck, LOCAL ACCESS OMNLY
=8 Towards a Teaching and Leaming Strategy for Birkbeck College, LOCAL ACCESS ONLY
~&] Towards a Teaching and Leaming Strategy for Birkbeck College. LOCAL ACCESS OMLY
Ly,
“d Lnks for the WoPoTal report on a Teaching  Leaming Strategy for Bikbeck, LOCAL ACCESS ORLY
4 Towards a Teaching and Leaming Strategy for Bikbeck College. LOCAL ACCESS OMLY
A Towards a Teaching and Leaming Strategy for Bikbeck College. LOCAL ACCESS OMLY
3 Departrments cormments on Towards a Teaching and Leaming Strategy for Birkbeck College. LOCAL ACCESS OMLY
A Towards a Teaching and Leaming Strategy for Birkbeck College. LOCAL ACCESS OMLY
8 Birkbeck Academic Staff Development horne page:
4 Warking Party on Teaching and Leaming at Birkheck College WoPoTal Home page and mermbers
4 Towards a Teaching and Leaming Strategy for Bikbeck College, LOCAL ACCESS OMLY
A Towards a Teaching and Leaming Strateqy for Birkbeck College. LOCAL ACCESS OMLY
Lay
-8 MSc in GISc by Distance Leaming (GIScOnline) Frequently Asked Questions
=2 GIScOnline and Birkbeck Colege Contacts for the MSc in GISC Programme
2 dishorne. bl

-2 GIScOnlineg Mew Students Information
-8 GIScOrling Prograrnme Handbook
4 GIScOnline and Birkbeck Colege Contacts for the MSC in GISC Programme
-4 dishorme.hitrrl

4 GIScOnline Prograrmime Handbook
A GIScOnline Virtual Conference
8 GIScOnline Resources
A GIScOnling and Birkbeck College Contacts for the MSc in GISc Programme
=2 dishorne. kit

Figure 6.31: Trails found for the query “distance learning” on the Birkbeck site.

192



CHAPTER 6. NAVIGATING THE WEB 193

-4 The Mini MBA
Hurnan Resources Managerment (Diploma)

‘1 Change Management {Diploma)
4 Human Fesources Managerment (Diplama)
A The Mini MBA

~H Managerment (Diplorma)
<A Managerment (Certificate)
8 Management (Diplorna)
2 Change Managerment (Diploma)

‘@ The Department of Management homepage, Bilkbeck College, University of London
2 Department of Management Staff
=& Dr John Hendry
2 John Hendry: Publications

8 The Department of Management homepage, Birkkbeck College, University of Londaon
=8 The Department of Management homepage, Birkbeck Colege, University of London
~d Schocl of Management Organizational Psychology Staff
“2Dr John Hendry
= John Hendry: Publications

-2 halt
4 staff
~H lappage

dlappage
—8 Arts Management (Certificate/Diploma/Diplorma by Ihdependent Study/Intensive Diplorma)

QA 0r Peter Trm
=4 Schoal of Management Organizational Psychaology Staff
<8 Dr John Hendry
2 John Hendry: Publications

=4 ACADEMIC STAFF

Figure 6.32: Trails found for the query “mba” on the Birkbeck site.

access 97 The trails below address the facilities for using, Microsoft Access '97. The last
page of the first trail was included as the “logical next step for a human”. The trail
author reasoned that “once the user knows the course on offer, it is likely they’d want
the booking instructions”. Interesting comparisons can also be made between these
trails and those produced for the query “access course”. The two sets were produced
by different authors, yet contain similar pages.

http://www.econ.bbk.ac.uk/helpdesk /stftrain/default.htm
http://www.econ.bbk.ac.uk/helpdesk /stftrain/package.htm
http://www.econ.bbk.ac.uk/helpdesk /stftrain/dbase.htm
http://www.econ.bbk.ac.uk/helpdesk /stftrain /booking.htm
http://www.bbk.ac.uk/ccs/docs/docs.htm
http://www.bbk.ac.uk/ccs/docs/docs.htm#ToCb
http://www.bbk.ac.uk/ccs/docs/5-69.pdf
http://www.bbk.ac.uk/ccs/docs/docs.htm
http://www.bbk.ac.uk/ccs/docs/docs.htm#ToCb
http://www.bbk.ac.uk/ccs/docs/5-70.pdf

=
N L~
G

)

a/\

a -

[N

N

= &
~— O e e e~ e N

@
—~ o~
)

—
o

Other comments made by the trail author whilst producing these trails indicate that the
use of a global search such as Google is still preferable to the site search facilities offered
by Birkbeck. The quality of site search indicates that there is still a large potential
market for the navigation engine approach if the technical problems can be addressed.



CHAPTER 6. NAVIGATING THE WEB 194

The trails in figure 6.33 show similar issues to the “access course” results. In addition
there is a problem handling numbers such as 97 - a feature which will be addressed in
more detail in section 7.10.

project management The first authored trail for this query covers the opening pages of a
set of lecture notes for the course on Comparative Development Methodologies (CDM).
These early pages cover project management tools. Later pages digress into database
systems which are of no relevance to the query and are thus excluded. The second trail
covers the project management aspects of the “Malet Street Project”.

1. (a) http://www.dcs.bbk.ac.uk/ steve/cdm4/index.htm

The constructed trails, shown in figure 6.34 cover general management issues. Proximity-
based IR would help narrow the search in this instance.

part time A single trail was authored in response to this query, covering Robin Middlehurst’s
talk on “Part-time study: now and in the future”. The trail, which is shown below,
is complete and comprehensive. In contrast the trails shown in figure 6.35 are again
dominated by GISc pages.

1. (a) http://www.bbk.ac.uk/asd/joint/joint2.html

)

)

)

)

) http://www.bbk.ac.uk/asd/joint /robin/sld002.htm
(f) http://www.bbk.ac.uk/asd/joint/robin/sld003.htm

) http://www.bbk.ac.uk/asd/joint /robin/sld004.htm

) http://www.bbk.ac.uk/asd/joint /robin/sld005.htm

)

)

)



CHAPTER 6. NAVIGATING THE WEB

Birkbeck College Library Electronic Jourmnals C

Birkebck College Ubrary Electronic Joumals Joumal of M 1S
Birkbieck Colege Ubrary Electronic Journals 1 Jourmnal of L
Birkbeck College Ubrary Electronic Joumals

Birkbeck Colege Lbrary Electronic Joumals &

= Birkbeck College Library Electronic Joumals E
=0 Birkebck College Librany Electronic Joumals Joumal of k1S
= Birkbeck College Ubrary Electronic Joumals J Joumal of L

-4 Birkkbeck College Librany Electronic Joumals 1 Joumal of L
81 Birkbeck College Library Electronic Joumals C
-4 Birkbeck College Library Electronic Joumals T
“g Birkbeck Callege Library Electronic Joumals I
—& Birkebck College Library Electronic Joumals Journal of k1S

-4 Birkebck College Librayr Electronic Joumals
-2 Birkbeck College Library Electronic Joumals 1 Joumal of L
-2 pirkbeck College Library Electronic Joumals &
< Birkbeck College Library Electronic Joumals F
“H Birkbeck College Library Electronic Joumals D
8 Birkbeck College Library Electronic Joumals C

=8 Birkbeck College Lbrary Electronic Joumals C
1 Birkbeck College Librany Electronic Joumals &

4 Bitkbeck College Ubrary Electronic Joumals H
=8 Birkbeck College Ubrary Electronic Joumals P
~4 Birkbeck College Library Electronic Joumals J Joumal of L
=4 Birkbeck College Lbrary Electronic Joumals E
=4 Birkbeck Callege Library Electronic Joumals C

= Birkbeck College Lbrary Electronic Joumals B
-H Birkbeck College Library Electronic Joumals C
4 Blrkbeck Callege Library Elec tronic Joumals Q
-4 Birkbeck College Library Electronic Joumals D
=& Birkbeck Caollege Library Electronic Joumals M
& Birkbeck College Librany Electronic Joumals I
A Birkbeck College Library Electronic Jourmals 1 Jourmal of L
~@ Birkebck College Librany Electronic Joumnals Joumal of WIS

=4 Birkbeck College Librany Electronic Joumals B
& Birkbeck College Library Electronic Joumals K
“H Birkebck College Librany Electronic Joumals Joumal of M 15
=4 Birkbeck College Ubrary Electronic Joumals J Joumal of L
“A Birkbeck College Library Electronic Joumals P
=& Birkbeck College Lbrary Electronic Joumals C

=4 Birkbeck College Library Electronic Joumals W
-4 Birkebck College Library Electronic Joumnals Joumal of M 15
4 Birkbeck Caollege Library Electronic Joumals O
0 Birkbeck College Library Electronic Joumals C

8 Birkbeck College Librany Psychology Joumals
=2 Birkbeck College Library Electronic Joumals O
-2 girkbeck Callege Library Electronic Joumals P
4 Birkbeck Caollege Librany Electronic Joumals E
4 pirkbeck Callege Library Electronic Joumnals 1 Joumal of L
‘& Birkebck College Library Electronic Joumals Joumal of # 15
-8 Birkbeck College Library Electronic Joumals C

=4 Birkbeck College Ubrary Electronic Joumals C
“Qirkbeck Colege Lbrary Electronic Joumals E
") Birkebck College Librayr Electronic Joumals M
=8 Bitkbeck College Library Electronic Jourmals T

Figure 6.33: Trails found for the query “access 97” on the Birkbeck site.

195



CHAPTER 6. NAVIGATING THE WEB

Week of 19091999 to 25091999
management

-4 ughandbook, pdf
i cookdbbl ac.uk

=2 Week of 12091999 to 18091999
~4 Page has moved
4 The Departrent of Management homepage, Birkbeck Colege, University of London
4 School Courses
-8 School of Managernent & Orgarizational Psychology Staff

=4 Page has moved
“8 MSc Course Descriptions
2 School of Management & Orgarizational Psychology Staff
“81 Sean Hamil
-8 Undergraduate Programmes
“2BA in Management BA in Accounting and Management
=& magbalist htm

-2 Birkbeck College Library Resources for Management
~& Birkbeck Colege Lbrary Management and Business Jourmals
=4 Birkbeck College Library Electronic Joumals T
-8 Birkebck College Library Electronic Joumals Joumal of 135
~ Birkebck Colege Librayr Electronic Joumals i
-8 Birkbeck College Library Electronic Joumals &
=& Joumal

8 Birkbeck College Library Resources for Cormputer Science
4 Birkbeck Caolege Library Resources for Management
=] Birkbeck College Library Management and Business Joumals
8 Birkbeck College Library Electronic Joumals [
-8 Birkebck Colege Lbrayr Electronic Joumals M
=4 Birkbeck College Library Electronic Joumals 1 Joumal of L
=4 Joumal

-4 Birkbeck College Lbrary Resources for Chemistry
& Birkbeck Colege Lbrary Resources by Subject
-4 Bikbeck College Library Pesources for Management
41 Birkbeck College Library Management and Business Joumals
=8 GIScCniine Programme Handboak
|-d Geography Staff YWeb Pages Rob Mahoney
8 The School of Geography Studying
-4 BSc Environmental Management |, School of Biclogical and Chermical Sciences, Birkbeck University of London
8 Undergraduate Courses, School of Biological and Chernic al Sciences, Biology, Bikbeck University of London
=3 GIScOnling Dissertations

=4 Birkbeck College Lbrary Electronic Joumals 1 Joumal of L
=& Joumal

Figure 6.34: Trails found for the query “project management” on the Birkbeck site.

196



CHAPTER 6. NAVIGATING THE WEB

—~
—

http://www.bbk.ac.uk/asd/joint /robin/sld009.htm
http://www.bbk.ac.uk/asd/joint /robin/sld010.htm
http://www.bbk.ac.uk/asd/joint /robin/sld011.htm
http://www.bbk.ac.uk/asd/joint /robin/sld012.htm
http://www.bbk.ac.uk/asd/joint /robin/sld013.htm
http://www.bbk.ac.uk/asd/joint /robin/sld014.htm
http://www.bbk.ac.uk/asd/joint /robin/sld015.htm
http://www.bbk.ac.uk/asd/joint /robin/sld016.htm
http://www.bbk.ac.uk/asd/joint /robin/sld017.htm

E

—~
— O N O N N —

S

—
=)

—
- 0

—~ N~
=+ w

-3 Mail Thread Index
[copabb]: MCS with molecular replacerment part 2

Re! [copdbb]: MCS with molecular replacement

“H [copabb]: Aming acid sidech ain volumes
=8 [copdbb]: How cal T get the missing part through refinement?
=i [copdbb]: Updated test version of cop
P il Index
=4 [copdbb]: How cal I get the missing part through refinement?
-4 [copdbb]: Updated test version of copdi
=4 [copdbb]: How cal 1 get the missing part through refinement?
-d [copdbb]: Amino acid sidechain volumes

8 [copdbb]: Applying for UK/EMBL bearn time on BM14, ESFF
L Re: [ccpdbb]: CCP4 ower Christmas period
i [copabb] Applying for Uk/EMBL beam time on BM14, ESRF
—d [copdbb]: CCIF_FOPEM ERROR
=4 GIScOnline Resources
L0 cIsconline and GISc Mews, and GIScOnling Bulletins
8 GIScOnline Yirtual Conference
0 GIScOnine Prograrmme Handbook
0 GIScOnine Examinations
“RGISconine Accepted Student Information

-4 GIScOnline Exarninations
HH GIScOnline Resources
-2 GIScOnline Yirtual Conference

=] GIScOrline Programme Handbook
8 GIScOnline Mew Students Information
—H GIScOnline Resources
=8 GIScOnline Dissertations
=8 GIScOrline Yirtual Conference

- GIScOnline Programime Handbook
8 GIScOnline Yirtual Conference
-8 GIScOrline Resources
=8 MSe in GISE by Distance Learming (GIScOnine) Frequently Asked Questions
-2 GIScOnline Accepted Student Information
=L GIScOnline and GISC Mews, and GIScOnling Bulletins

=8 Pine Technical Motes: Configuration and Preferences

A GIscOnine Dissertations
=2 GISc0nlne Resources
8 GIScOnline Yirtual Conference

=2 GIScOnline Mew Students Informmation
SHMEC in GISt by Distance Leaming (GIScOnling) Frequently Asked Questions
-8 GIScOnline Resources
=8 GIScOnline Yirtual Conference
1 GIScOnline and GISc Mews, and GIScOnline Bulletins
=4 GIScOnlne Exarninations
=4 GIScOnline Programme Handbook

Figure 6.35: Trails found for the query “part time” on the Birkbeck site.

197



CHAPTER 6. NAVIGATING THE WEB 198

research grants history The authored trail shows the page for the Research and Grants
Office, in the context of the “Fees and Grants” section of the History, Classics and
Archaeology department research page. The first computed trail also highlights this
key page, but does not identify the specific section. The computed trails also show
the main “Research at Birkbeck” page which also has a section on grants and fees.
Furthermore, the computed trails show further details of history research which is likely
to be pertinent.

1. (
(

Research at Birkbeck
indes.htrml

~4 The Planning Office
(-4 Student Intranet Home Page
-d indes.html

i About Birkbeck
=2 indes. bl

-4 BA HISTORY AT BIRKBECK COLLEGE
=4 Birkbeck Colege History Departrment
=& mark. willamsidbbk, ac,uk

-4 Historical Research at Birkbeck
4 Birkbeck Colege History Departrment
=4 mark. willamsi@bblk, ac. Uk

-1 BA HISTORY AT BIRKBECK COLLEGE
~d Making your Application
=8 index . htrrl

~d Birkbeck Colege History Departrment
=& mark. willamsmbbk, ac,uk

-4 MPhil/PHD French 2002
=a MPhl Applied Linguistics (Structured Programme) 2002
=1 Postgraduate Languages and Linguistics Courses 2002 Entry
=4 Postgraduate History of Art Courses 2002 Entry
=& indes. bt

8 MPHilPhD German 2002
=4 MPhil/PhD Spanish 2002
4 Postgraduate Languages and Linguistics Courses 2002 Entry
=4 Postgraduate History of Art Courses 2002 Entry
A4 History of Art by Research 2002
=4 Postgraduate History of Art Courses 2002 Entry
H index.himl

=4 LIBRARIES FOR ART HISTORY BOOKS:
-4 Page has moved
=4 Student Intranet Home Page

Figure 6.36: Trails found for the query “research grants history” on the Birkbeck site.



CHAPTER 6. NAVIGATING THE WEB 199

social The trails for this query could contain pages regarding social life at Birkbeck or pages
relating to social sciences. However, the only authored trail contains pages relating to
social policy within the Faculty of Continuing Education (FCE). The computed trails
shows literature relating to social science in the Birkbeck Library.

1. (a) http://www.bbk.ac.uk/study/fce/index.html
(b) http://www.bbk.ac.uk/study/fce/socpolicy /idxsocpolicy.html
(c) http://www.bbk.ac.uk/study/fce/socpolicy /socpolcd.html

(d) http://www.bbk.ac.uk/study/fce/socpolicy /socpolcd.html#c01

.-‘).'tgirl-:hec:k College Library Resources for Politics Sociollogy
cdrom.html

i Birkbeck College Library AZ Index of the \Web site
=& cdrarn.html

“d Birkbeck College Library Politics and Sociology Joumals
4 Birkbeck College Library Electronic Joumals S
=] Birkbeck College Library Electronic Joumals J Joumal of L

=4 Birkbeck Colege Lbrary Psychology Joumals
=4 Birkbeck College Library Electronic Joumals 5
=4 Birkebck College Ubrary Electronic Joumals Joumal of M 15
=& Birkbeck College Library Electronic Joumals 1 Joumal of L

=4 Birkbeck Colege Lbrary: spplied Linguistics Joumals
=4 Birkbeck College Library Electronic Joumals 5
=4 Birkebck College Library Electronic Joumals Joumnal of M 1S
=2 Birkbeck College Library Electronic Joumals 1 Joumal of L

<4 Birkbeck College Lbrary &pplied Lnguistics Joumals
=8 Birkbeck College Ubrary Electronic Joumals 5
-4 Birkebck Colege Librayr Electronic Joumals i
=8 Birkebck Caollege Lbrary Electronic Joumals Joumal of M 15

“d History Joumals
=& Birkbeck College Library Electronic Joumals S
(= Birkebck College Library Electronic Joumals Joumal of 1 15

=4 Birkbeck Colege Library Electronic Joumals 1 Joumnal of L
d Birkebck College Lbrary Electronic Jourmnals Joumal of i J5

Figure 6.37: Trails found for the query “social” on the Birkbeck site.

ba history Only a single trail was authored for this query, and although nine links are
present, there are only two pages identified. The computed trails identify different
pages covering the same material, and identify alternative undergraduate humanities
subjects, including the history of art course, which is most likely to be of interest.

1. (a) http://www.bbk.ac.uk/hca/courses/bahist.htm

- (a)
(b) http://www.bbk.ac.uk/hca/courses/bahist.htm#bahist
(c) http://www.bbk.ac.uk/hca/courses/bahist.htm##entrance
(d) http://www.bbk.ac.uk/hca/courses/bahist.htm#apply

(e) http://www.bbk.ac.uk/hca/courses/bahist.htm#degreeprog
)

(f) http://www.bbk.ac.uk/hca/BA_Course_Descriptions/BA_History_courses.htm



CHAPTER 6. NAVIGATING THE WEB 200

(g) http://www.bbk.ac.uk/hca/BA_Course_Descriptions/BA _History_courses.htm#groupl
(h) http://www.bbk.ac.uk/hca/BA_Course Descriptions/BA_History_courses.htm#group2
(1) http://www.bbk.ac.uk/hca/BA_Course_Descriptions/BA _History_courses.htm#group3



CHAPTER 6. NAVIGATING THE WEB

BA Humanities Courses 2002
BA History of Art 2002
B Hurnanities Courses 2002
BA History 2002
indes.hitrl

BA French Studies 2002
4 BA Humanities Courses 2002
-2 BA History 2002
-8 BA Hurnanities Courses 2002
-2 BA French Studies 2002
-2 BA French and Gennan 2002
-4 BA Humanities Courses 2002
-8 BA German 2002
-4 BA Humanities Courses 2002
-4 BA History 2002
-2 indes. htrnl

<8 Subject and Course Index, Undergraduate Prospectus 2002 Entry

BA Humanities Courses 2002
-4 BA French Studies 2002
A BA Humanities Courses 2002
4 BA History 2002
=i incde. il
=2 Undergraduate Hurmanities Courses 2002 Entry
8 BA Hurmanities Courses 2002
“ABA Gemman 2002
& BA Humanities Courses 2002
2] BA History 2002
“Qindex.html

‘2 BA Gemman 2002
“0BA Hurnanities Courses 2002
“8 BA Spanish and Latin &mencan Studies 2002
0 BA Humarities Courses 2002
“2BA French Studies 2002
“2BA Humanities Courses 2002
-4 BA History 2002
0 index. htral

-4 BA Moderm Gennan Studies 2002
~4 BA German and Spanish 2002
=4 BA Linguistics and Languages 2002
~4 BA Humanities Courses 2002
=4 BA French Studies 2002
=& BA Humanities Courses 2002
=4 BA German 2002

& BA German and Management 2002
=4 BA Humanities Courses 2002
-4 BA History of Art 2002
4 BA Humanities Courses 2002
-2 BA German 2002
“H BA Huranities Courses 2002
& BA Spanish and Latin American Studies 2002
—2 BA Humanities Courses 2002
& BA History 2002
=& index.html
~d BaA French Studies 2002
“{1 BA Humanities Caurses 2002
=8 Undergraduate Hurnanities Courses 2002 Entry
=2 BA Humanities Courses 2002
-1 BA History 2002
“4 BA Huranities Courses 2002
=5 BA German 2002
“4 BA Linguistics and Languages 2002
=8 BA Huranities Courses 2002
4 BA History 2002
=8 index.html

01 BA History 2002
“4BA History and Archaealogy 2002
-2 BA History 2002
“8 BA Humarities Courses 2002
~d BaA French Studies 2002
“2 BA Humanities Courses 2002
-0 BA German 2002
-4 BA Linguistics and Languages 2002
-0 BA Hurmanities Courses 2002
“d BA History 2002
=8 index.htrl

Figure 6.38: Trails found for the query “ba history” on the Birkbeck site.

201



CHAPTER 6. NAVIGATING THE WEB 202

6.6.3 Conclusions

From the results of this comparison, the following conclusions have been drawn:

1. When key pages can be identified which satisfy the users information need and can be
judged relevant using IR measures, these appear frequently in both the authored and
computed trails. Otherwise, there is little overlap between the content of authored and
computed trails, although the quality of both is generally high.

2. It has been suggested that the computed trails are too long and need to be shortened.
Figure 6.39 shows the distribution of Trail Lengths for authored and computed trails.
For authored trails, the mean, mode and median lengths are 3.65, 3 and 3, respectively.
For the computed trails, the mean, mode and median lengths are 4.38, 2 and 4, respec-
tively. From this direct comparison it can be seen that, in general, the computed trails
are not significantly longer, but may be so in certain specfic cases.

3. From the reports of the trail authors, it can be seen that the effort which must be
expended in authoring trails is a significant impediment to the adoption of any sys-
tem designed exclusively for manipulating authored trails. For this reason, the use of
computed generated trails seems highly desirable.

4. In order to be of maximum value, constant improvement of all the components needs to
be made to keep up with the current state of the art. For example, recent advances have
been made in improving Web page summarization techniques (Over and Yen 2003; Yang
and Wang 2003) and in facilitating corporate intranet search (Fagin, Kumar, McCurley,
Novak, Sivakumar, Tomlin, and Williamson 2003). Advances have also been made in
tackling the logistical challenges of search engine development. Recent progress has
been made in identifying techniques for updating indexes (Lim, Wang, Padmanabhan,
Vitter, and Agarwal 2003) and for representing large Web graphs (Boldi and Vigna
2003). Combined with better information retrieval, some of these techniques may be
effective in improving the overall quality of the system.



CHAPTER 6. NAVIGATING THE WEB 203

0.35

0.3

0.2 —

0.15 — |

Percentage Frequency

1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20 21 22
Trail Length

Figure 6.39: Distribution of Trail Lengths. Blue bars show the percentage of authored trails
which are of each length. Red bars show the percentage of computed trails of those lengths.



CHAPTER 6. NAVIGATING THE WEB 204

6.7 Scaling to the Web

Although site-search is of vital importance, and deserves special attention as an area of
research separate from global search engines, it would be highly beneficial to allow full Web-
scale trail finding. Unfortunately, the current architecture will not scale to full-size Web data.
However, the problem can be broken down. Conventional search engines do not index the
full content of the Web. They select some subset to index based on usage statistics, link
analysis or the output of dedicated crawling algorithms designed to select high-quality nodes
first (Pinkerton 2002; Cho, Garcia-Molina, and Page 1998). A subset of this can be selected
on which to perform trail computation. For example, trail information could be computed on
high-profile or highly-popular sites such as yahoo.com, cnn.com or bbc.co.uk whilst single-page
results are returned for the remaining indexed pages. An alternative strategy is to construct
a restricted graph based upon the search results for a given query, over which trails could
be constructed. Whilst this approach would suffer less scalability problems, it might suffer
similar performance issues to Kleinberg’s approach of expanding the search results (Kleinberg
1998).

Whilst multiple servers can easily be used for load balancing without affecting the under-
lying application structure, it might be neccessary to split a corpus across multiple servers.
Distribution of the index is needed if and when it becomes too large to efficiently fit on a
single machine. Most search engine architectures rely on distribution across a large number of
machines, although the exact number of servers varies from dozens to thousands (Risvik and
Michelsen 2002). The techniques described in this section offer ideas for how this distribution
can be achieved. These techniques have been implemented and are known to work. Un-
fortunately, a meaningful evaluation of their performance would require a large multi-server
network on which comprehensive tests could be performed.

6.7.1 Splitting the Index

The two most popular approaches to distribution are to split the collection by keyword or
by document. Splitting by document implies that for any given document the scores for all
possible keywords are stored on the same physical machine. On the other hand, splitting by
keyword means that all the scores for any given keyword are similarly co-located, irrespective
of which document they originated in.

One suggested advantage of splitting a corpus by keyword is that a full ranking can be
achieved with the results from a single server. Hence questions can be answered by a single
server for many queries. The first counter argument to this is that a full ranking should
not be used wherever possible. For example, if only the top 10 documents are required, and
the query consists of a single keyword then only 10 entries need be looked at. The second
counter argument is that for many queries it will be neccessary to transfer the entire index
of the least-popular term. The effects of this can be minimised by clustering keywords based
upon in-query popularity. For example, the entry for “britney” will be on the same physical
machine as the entry for “spears”. The suggested way to build a split by keyword index is to
send each keyword to be processed by a different server, and use a central server to compute
normalization factors.



CHAPTER 6. NAVIGATING THE WEB 205

One of the supposed advantages of splitting the collection by document is that the repeated
querying of a popular term will not cause the failure of a particular server. The argument
against this claim is that popular terms are likely to be included in the most popular queries
and are likely to hit both page and disk caches a high percentage of the time. A second
claim is that if using split by keyword, the removal of a single server can leave some queries
impossible to answer. The argument against this claim is that the server shutdown should
remain unnoticed as it will be compensated for by redundant servers. It should also be noted
that both Google and AltaVista use an index which is split by document, as do the Stanford
Database group in their Berkeley-based system (Hirai, Raghavan, Paepcke, and Garcia-Molina
2000).

The suggested way to build a split by document index is to send each document to be processed
by a different server, and maintain a single server for computing ¢ f.idf values. For example,
all temporary files are processed and sorted before the aggregation begins. This operation is
then performed in such a way as to maintain integrity across the collection. The simplest way
to do this is to aggregate the collection whilst spawning events for each distinct keyword which
tell the control server to update the keyword #df score. Once this is done the aggregated file
is re-processed to weight the scores accordingly, before finally building the B-tree as before.

An extension to the split-by-document principle is to split the index according to logical
clusters, such as Web sites. Whilst there is no advantage in indexing time and a slight
disadvantage in query time, the returned trails should be contained in the indexes of a single
server or few servers. Trails crossing server boundaries can be constructed by forming a new
trailset of the concatenations of other trails.

6.7.2 Graph Partitioning

If the system requires an in-memory graph, then the index must be split to match the graph.
If the corpus is spread across many domains with relatively low levels of interlinking then it
may be possible to use a variation of the domain hashing algorithm used by the Mercator
Web crawler (Heydon and Najork 1999a). If this is not the case then two new algorithms are
required — one to split the graph, and a second algorithm to combine the results. Natural
assumptions for splitting the graph are that the algorithm should:

1. Keep the number of documents on each server as close to equal as possible.

2. Minimise the likelihood of useful trails being missed due to the need to cross servers.

This can be achieved if a partitioning scheme can be identified for the graph G = (N, E) such
that G is split into a set of n graphs S = {G1 = (N1, E1),Gy = (No, E3) ... Gy, = (N, Ey)}
such the following parameters « and 8 are minimized:

L o=k (|Ng])?

2. = ({z,yl(z,y) € EA=(3k z € Ny Ay € Ni)}|)?

It is not required that the subgraphs be free of overlap. Overlapping graphs may be required to
keep the number of split links down. However, it is required that all nodes be contained in at



CHAPTER 6. NAVIGATING THE WEB 206

least one subgraph. The first constraint keeps the sets from growing too large, or too skewed.
The second constraint reduces the number of missing links to a minimum. Figure 6.41 shows
how four partitions of the graph in figure 6.40 would affect the values of o and 8. Experiments
will be required to determine the relative importance of these measures.

Flake et al. proposed a method for identifying communities using a variation of the max-flow,
min-cut method, where they defined a web community as a collection of pages such that
each member page has more hyperlinks (in either direction) within the community than to
or from pages outside of the community (Flake, Giles, and Lawrence 2000; Flake, Lawrence,
Giles, and Coetzee 2002). A variation of this technique should allow the construction of
the appropriate graphs, considering that during the partitioning process the graph may be
larger than at query time, due to lack of caching, index files, metadata and other memory
constraints.

Figure 6.40: Example graph for partitioning.

Node Sets Edges Cut a | B
{A,D} {B,C,F,E} | {(D,F)} 20| 1
{A,D,F} {B,C,E} | {(F,B),(F,E)} 18 | 4
{A,B,C} {D,E,F} |{(A,D),(B,F),(C,E)} |18 |9

{A,D,F} {B,C,F,E} 25| 0

Figure 6.41: Example of the effect of various partitioning schemes on the graph shown in
figure 6.40.

6.7.3 Merging Results
Trails computed on multiple graphs must be merged together before being presented to the

user. In order to achieve this, the concatenations of trails within the two webcases must be
considered. To merge two trailsets 77 and 75 which are valid across a combined Web Graph



CHAPTER 6. NAVIGATING THE WEB 207

G =< E,V >, a new trailset T should be created such that:

T =T U{zylz € T1,y € Ty, (z)z,y1) € E} U{zyzlzy € T1,yz € To,y # 0}
Uly U {',I"y|$ € TZay € Tla (w\w\ayl) € E} U {.TyZ'.’L'y € T27yz € Tlay 7£ Q)} (61)

It may not be assumed that any of the trails in 7" would have appeared in the candidate set
for a combined Web Graph, but the results should provide a reasonable approximation.

It should be noted that subsequent reduction of the trails will remove all repeated subtrails
from within a trail as long as the resulting trail remains valid with respect to the Web Graph
G. Hence, only one string need be taken from the set {zyz|zy € Th,yz € Ts,y # 0}. This
makes implementation easier and limits the size of T' to no more than 3|77 ||T%|).

The importance of a webcase with respect to a query can be defined as a number in the range
0 to 1. The importance of each webcase will depend on many factors:

Size The more documents contained in a webcase, the more trails are likely to originate from
this webcase and hence the higher the importance ranking.

Focus How focused is each webcase on each query term. High idf values imply low numbers
of matching documents and a low number of documents relevant to the query within
the webcase.

Freshness More recently updated webcases should be judged as more important.

The first 2 factors combined by weighting according to the occurrence of each term (or log of
each term’s occurrence) as a ratio/proportion of the total for all webcases.

Two functions, called f; and f, in the example, are required to calculate the number of trails
to be computed on each source and the weight to assign to any given trail based upon that
importance and the original trail score. If the trail scores are such that keyword frequencies
are normalized across the sources, this task is made significantly easier.

If the webcases have been constructed with identical ¢ f.idf values for all terms, then lines 6,7
and 8 can be replaced with the single instruction sort results by p(trail).

Similarly, it is possible to simplify the selection algorithm such that the processing of trail
expansion is conducted equally across all webcases, or selected without per-query bias. The
test here is whether the time wasted due to processing on less-important webcases is saved
in not needing to compute the importance metrics.

Another alternative selection policy is to pre-select the candidate starting points for each
webcase and use that as the basis for determining which threads should be run on which
servers. This is probably the most sensible policy to use in a local network environment.



CHAPTER 6. NAVIGATING THE WEB

Algorithm 11 (Merge(query))

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.

beg

in

compute importance of each webcase w.r.t. query
for each webcase

if importance(webcase) > threshold
compute fi(n,importance(webcase)) trails from webcase without reduction.
foreach trail € results
weighttrail = f2 (p(traz'l), Z.Imfpo'rtancewebcase)
end foreach
end if

end foreach
sort results by weight
return results

end.

Figure 6.42: Algorithm to merge sets of trails from multiple sources.

208



CHAPTER 6. NAVIGATING THE WEB 209

6.8 Concluding Remarks and Future Work

The chapter has demonstrated the usefulness of applying the navigation engine to the dis-
covery of Memex-like trails to Web site navigation. The development of this application
represents a key contribution in helping to solve the navigation problem.

The demonstration of graphical interfaces, examples of the trail-based approach for solving
the navigation problem, and presentation of theoretical techniques for allowing scalable, dis-
tributed, trail-based search on the Web have been backed up by extensive evaluations. As a
result of these evaluations, the following conclusions were reached:

1. The quality of the returned trails is sufficiently high to be of genuine use to users. The
findings by Mat-Hassan and Levene show that the combination of engine and interface
is highly effective in increasing satisfaction and reducing the task completion time.

2. The resource discovery problem was defined in section 2.4 as the problem of finding a
given document or resource answering an information need. Furthermore, the navigation
problem was defined in section 2.8 as that of stopping people from getting “lost in
hyperspace”. The suggestion of trails is analogous to the provision of guided tours
and helps solve the navigation problem. The use of trails also provides context and
thus also helps to solve the resource discovery problem by allowing users to more easily
distinguish between relevant and irrelevant documents.

3. Relying on standard IR evaluation techniques is not feasible for assessing trail-based
search and navigation systems. Such techniques are unlikely to be viable for assessing
information-unit based systems or similar novel interfaces. Standard relevance testing,
anecdotal evidence and TREC-style evaluations all miss contextual information which
is shown to be useful by the nature of the authored trails.

4. Small sections of pages may be useful for answering queries. Future trail-based sys-
tems should use IR techniques capable of splitting pages into separate components and
identifying anchor links of interest.

5. Manual authoring of trails is difficult, time-consuming and error-prone. Bush’s original
concept of human trail-blazers should be updated in favour of automated trail-finding
systems, such as that proposed herein.

6. The work on the navigation engine is far from complete. Several important additions
need to be made to create a complete system:
(a) Better IR techniques.
(b) A more sophisticated system for generating short titles.

(c¢) Integration with CMSs including an API to allow partial updates and instantaneous
manipulation of the graph.

(d) Near duplicate detection.

(e) Distribution, including implementation and evaluation of the partitioning and trail
merging schemes described in section 6.7.



CHAPTER 6. NAVIGATING THE WEB 210

All of these represent research problems which have received considerable attention.
Integrating the results of recent research into the navigation engine is a minor research
issue, but a significant software engineering challenge and is beyond the scope of this
thesis.



Chapter 7

Search and Navigation in Database
Systems

A generic tool could perhaps be made to allow any database which uses a com-
mercial DBMS to be displayed as a hypertext view.

Berners-Lee 1989

Future users of large data banks must be protected from having to know how the
data is organized in the machine (the internal representation).

Codd 1970

211



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 212
7.1 Introduction

Codd’s statement that users “must be protected from having to know how the data is or-
ganized in the machine (the internal representation).” (Codd 1970) referred to the physical
structures used by experts and programmers. For many users of modern systems, being pro-
tected from the internal structures of pointers and hashes is insufficient. They also need to be
spared the requirement of knowing the logical structures of a company or of its databases. For
example, customers searching for information on a particular product should not be expected
to know the address at which the relevant data is held, but neither should they be expected
to know part numbers or table names in order to access this data, as required when using the
Structured Query Language (SQL).

Relational DataBase Management Systems (RDBMSs) contain much of today’s corporate
data, often with dynamic content generation layers providing Web views. Such data com-
prises a large chunk of what is known as the “hidden” or “deep” Web. The word “hidden”
means that, from a practical point of view, this data is hidden from conventional search en-
gines. The word “deep” is intended for greater accuracy, meaning that the data can only be
accessed through a specialised query interface. It is estimated that the deep Web contains
500 times more information than is visible to conventional search engines (Bergman 2000).
Search engines traditionally crawl data from Web sites by downloading pages and construct-
ing indexes which reference these pages by URL. It has been shown in the previous chapters
how this technique can be extended to support trail finding across Web sites. However, this
technique works well only for static pages and fixed content in the “publicly indexable Web”.
Crawling data through hidden Web interfaces is possible (Raghavan and Garcia-Molina 2001),
but expensive in terms of resources and unreliable in that there can be no guarantees that
the data is complete or representative of the database.

One way for users to access data in the deep Web is through a site-specific search engine,
such as the query interface at Amazon.com. One can imagine that Amazon have a relational
database storing all their catalogue information, over which the full-text query facility was
developed. Research shows that users actively use such interfaces and expect major Web sites
to support unstructured search facilities (Nielsen 1997). These interfaces are more natural
than the SQL syntax supported directly by the database. However, the full-text search will
result in a loss of expressiveness relative to the full expressive power of SQL, which is an issue
that will be partially explored. One can argue that many end users do not need access to the
full expressive power of SQL. Studies of keyword-based search engines on the Web have shown
that users type short queries, rarely use advanced features and are typically bad at query
reformulation (Silverstein, Henzinger, Marais, and Moricz 1999; Jansen, Spink, and Saracevic
1998; Spink, Bateman, and Jansen 1998; Spink, Jansen, Wolfram, and Saracevic 2002). It is
likely that profiles for users of database search facilities will reveal similar behaviour.

Building on the previous work on Web-based trails, a tool called DbSurfer has been devel-
oped which provides an interface for extracting data from relational databases. This data is
extracted in the form of an inverted index and a graph of foreign key dependencies, which
can together be used to construct trails of information, solving the join discovery problem
and allowing free text search on the contents. The free text search and database navigation
facilities can be used directly, or can be used as the foundation for a customized interface. The
system differs from previous efforts in the algorithms used, in the presentation mechanism



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 213

and in the use of primary-key only database queries at query-time to maintain a fast response
for users. Examples are shown on data from the Digital Bibliography and Library Project
(DBLP) data set.

The other major repositories of data in the hidden Web are CMSs such as Vignette or Doc-
umentum. These systems help corporations with content creation, management, publishing
and presentation. Often these contain facilities for intranet document management, which
will track versions, changes and linkage information. In other systems, a content manage-
ment system is linked to a separate system for document control. For example, Microsoft’s
Content Management Server can access documents stored in SharePoint Portal Server, as
shown in figure 7.1. Documents in these systems often lack hypertext links between the docu-
ments which could be used to construct meaningful trails. However, the documents are often
classified using a hierarchy of categories. Some strategies have been developed for linking
documents based upon the categories under which they appear, which can then be used to
construct trails. A prototype system, called Vertical Trailer has been developed to test these
principles.

Information Information
Expert Manager

/ i X
Web site
ublisher Manager

Approve
M Update
o wﬁspm

Update

Publish

Figure 7.1: Microsoft’s Content Management Server (CMS) can create pages which reference
documents in a SharePoint Server (SPS), where documents are referenced by a hierarchy of
categories.

The rest of this chapter is organized as follows:

Section 7.2 describes methods of indexing the contents of relational databases to enable
keyword search and trail discovery. The textual content of the database is stored in an
inverted file using the architecture and data structures discussed previously.

Section 7.3 describes related extensions to the navigation engine architecture. These exten-



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 214

sions allow DbSurfer to index database content and present data from the database in
a generic web page format.

Section 7.4 discusses the work done to incorporate XML indexing into the system. All
the data extracted from relational databases is converted to XML before indexing and
alternative sources of XML data can take advantage of the facilities provided.

Section 7.5 discusses how DbSurfer complements the preceeding work to provide expressive
queries for solving user’s information needs.

Section 7.6 gives examples of this technique using DBLP data. This is the same data set
used to test the BANKS System (Hulgeri, Bhaltoia, Nakhe, Chakrabarti, and Sudarshan
2001).

Section 7.7 gives an overview of preliminary work into the evaluation of DbSurfer and re-
lated systems.

Section 7.8 presents techniques for applying trail-finding techniques in data management
systems where documents are classified in hierarchies, taxonomies and ontologies.

Section 7.9 discusses alternative systems for free-text search in databases. These include
BANKS, Mragyati and DbXplorer.

Section 7.10 concludes with directions for future research.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 215
7.2 Indexing Relational Databases

7.2.1 Translating a Relation to a Full-Text Index

A single relation (or table) is a set of rows, each of which can be addressed by some primary
key. To index these rows, the data is extracted from each row in turn and a virtual document
or Web page is constructed, which is indexed by the parser. Chapter 5 described how this
parser will recognize Web content and handle document formats such as Postscript, PDF,
Microsoft Office, Shockwave Flash and RPM package formats. Files of these types may be
stored as Binary Large OBjects (BLOBSs) in a database, but may never be indexed by RDBMS
structured indexing facilities. The textual content of this document is extracted and stored in
an inverted file (Harman, Fox, Baeza-Yates, and Lee 1992). During the parsing stage, URLs
are retrieved which reference other Web pages. These URLs may be sent to the crawler and
the pages indexed in the same index. The inverted file is indexed such that the posting lists
contain normalized tf.idf entries as described previously.

Whilst these virtual documents are transient and exist only for the time it takes for the
data to be indexed, the entries in the posting lists provide references to a servlet which
will reproduce a customized page for each row entry. This is achieved by extracting the
data, converting it to XML using a Simple API for XML (SAX) generator and applying
an eXtensible Stylesheet Language Transformations (XSLT) stylesheet to the resulting page
(Harold and Means 2001). Binary data is handled with a separate servlet accessed via links
from these pages. The data for these pages is always accessed via a primary key, so the page
display is almost instantaneous. This is essential for providing the quick responses that users
insist on (Nielsen 2000). It is a practical impossibility to guarantee response times on large
databases when queries may contain full table scans and much work goes into avoiding them
in traditional e-commerce systems (Gurry and Corrigan 1996).

The primary key may not be a convenient index to embed in a URL. For example, it may be
a composite key with a large number of attributes or even a binary object. To cover these
possibilities and make the system robust, a second identifier may be created to identify this
key, giving a two step lookup process. This index is held externally to the database. Oracle
databases contain a unique rowid for each table which can be indexed, preventing this two-
stage process. Similar optimizations exist for other databases, but these have yet to be fully
exploited.

7.2.2 Generating the Link Graph

Answers to users’ queries may not be contained in a single table. Often the results are spread
over several tables which must be joined together. Such queries can be answered with the
help of a link graph. The link graph is constructed by examining the foreign key constraints
of the database (either by the accessing the data dictionary table or via the Java DataBase
Connectivity (JDBC) APIs) and the data entries themselves. Each (table, attribute) pair
where there is a recognized referential constraint generates a bi-directional link. Each row
entry is converted to a URL and the indexes for these URLs are added to the link graph. The
set of links between Web pages and between database rows and Web pages is also added to
this graph. This is equivalent to the Web graph used for site search and is stored in the same



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 216

manner. The strength of this approach is that it allows transparent access to the database
in a manner which is compatible with access to any other Web page and allows for relational
data to be joined with relevant Web data. This mechanism can be extended to include secure
access for users on an internal network.

7.2.3 Computing Joins with Trails

A natural join of two tables or relations R and S is the relation containing tuples that result
from concatenating every tuple of R with every tuple in S where the values for some set of
common join attributes, b are equal in both R and S. The natural join (Codd 1970) of R with
S is defined as the set:

RX S = {(a,b,c)|(a,b) € RA (b,c) € S}

The join discovery problem is defined as being that of determining a network, tree or sequence
of tuples which may be joined to best provide an answer which satisfies a users information
need. In both the relational algebra and in SQL, the joins are specified directly by the user.
In the case of SQL, the relations R and S are specified in the from clause of the select
statement whilst the set of join attributes b is specified in the where clause, which also
restricts the set of tuples to those with elements matching specified values. This places the
burden of responsibility firmly on the user. In a keyword-based tool, the computer must be
responsible for identifying these connections.

In a correctly configured RDBMS schema, the permissible joins may be inferred by the in-
tegrity constraints on the relations of the schema. It has been shown how these can be used
to construct a graph of related tuples. The inverted file can be used to identify those tu-
ples which are most likely to be relevant to the user’s query, and the potential gain metric
can be used to identify those nodes which are highly connected. Given this information, the
navigation engine can be utilized to construct joins. Each node on a trail found by the Best
Trail algorithm directly specifies a primary key value to identify a tuple in R or S, and a
link between two nodes implies a natural join exists between the single item relations con-
taining these tuples. The concept of trails is well established in the hypertext community,
but DbSurfer represents the first system to allow their construction across tables in relational
databases.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 217
7.3 Extending the Navigation System

Conventional Web search engines usually use an architecture pattern comprising three com-
ponents — a robot or crawler, an indexer and a query engine (Pinkerton 1994; Brin and Page
1998; Risvik and Michelsen 2002). It has been shown how the design can be extended with
the trail finding system. In addition, the crawler can be augmented with the database indexer
described above. A key difference betweeen the DbSurfer and a conventional search engine
is that a search engine traditionally returns links to pages which are logically and physically
separated from the pages of the servers performing the query operations, whereas the links
returned by the DbSurfer refer mostly to the row display servlet described. Figure 7.2 shows
the detailed architecture. The data from the database is retrieved by the DbReader when the
index is built and by the display servlet when examining the constructed trails. The database
indexer (or reader) works by connecting to the database, selecting all the accessible tables
and views available, and asking the administrator which of these should be indexed. The
program will then extract the referential constraints for all of the selected tables and build a
lookup table. This is kept separate from the main index and used by both the indexer and
the display servlet.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 218

| HTMp, Page

Web Site(s) oty
€s
& / Crawler
\;z“’ / Robot
»
&
<
; w,
7 ds
A
" oy, Index
M, Page DB \1\‘““&\ ?“‘?’es - Builder
Reader _g
K _L
User . Display s

Servlet

=
3 =
£
%; \ WebGraph ;
©

/ jﬁ Inverted File

“ay, d Relational g
W Database Z
s
____________ Keywords «-..___ éc
A Query
Engine
£eS
Trajy, Trail Qo $e0
Engine

Figure 7.2:  Architecture of DbSurfer. Closed boxes represent the external sources of data
which the user is interested in; open-ended boxes represent internal data stores; unshaded
circles represent processes typically associated with search engines; shaded circles represent
processes unique to DbSurfer; solid arrows represent data flow and dotted arrows represent
flows of important information (URLs and Queries). Simple keyed “get” instructions (for
example in HT'TP requests) are omitted for clarity.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 219

7.4 Semi-Structured Data and XML

A relational database can be viewed as a special case of a more general model of semistructured
data and XML (Abiteboul, Buneman, and Suciu 2000). Hence it might not be suprising that
XML data can be handled using DbSurfer. Indeed, that is all that DbSurfer does! The
virtual documents alluded to in section 7.2 are XML representations of relational tuples.
Figure 7.3 shows an example of this from a row in the DBLP schema discussed in section 7.6.
The superfluous row element has been added for compatibility with the emerging SQL/XML
standard (Eisenberg and Melton 2002). The proposed standard includes generation of an
XML Schema which is neither constructed nor required at present.

(PUBLICATION)
(row)
(JOURNAL) Advances in Computers (/JOURNAL)
(KEY) journals/ac/Dam66 (/KEY)
(PAGES) 239-290 (/PAGES)
(TITLE) Computer Driven Displays and Their Use in Man/Machine Interaction. (/TITLE)
(TYPE) article (/TYPE)
(URL) http://dblp.uni-trier.de/db/journals/ac/ac7.html#Dam66 (/URL)
(VOLUME) 7 (/VOLUME)
10. (YEAR) 1966 (/YEAR)
11.  (row)
12. (/PUBLICATION)

1
2
3
4.
5.
6
7
8
9.

Figure 7.3: Example XML entry extracted from the DBLP Schema.

Attribute names are indexed as individual keywords so that a query “Anatomy of a search
engine author” should return trails from the Anatomy paper to the entries for Sergey Brin
and Larry Page. In addition, all keywords are associated with the containing tags. XML
documents discovered on Web sites are automatically recognized as such and can be indexed
in the same way, as can XML documents stored in the database, thus increasing coverage.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 220
7.5 Query Expressiveness

The navigation engine query syntax has been extended to support an attribute container
operation using the “=" sign. The construct £ = y means that an attribute y must be
contained in an XML tag z. For example, the query “Simon” might return publications
relating to Simon’s probabilistic model as well as articles by authors named Simon. The
query author=simon would restrict the returned entries to those contained in an XML element
(author), which translates to those in the author table. i.e. publications written by authors
named Simon. The search engine query operations such as +, - and 1ink: are still supported
with this extension. Thus a query “Computers -type=phdthesis -type=mastersthesis” would
return books, journals and articles on Computers, but no theses. This syntax does require
some knowledge of either table or attribute names, but exists as an option to allow those with
such knowledge to gain greater control.

This means that trails can be provided which answer disjunctive queries (the default), with
preference for results containing as many keywords as possible. The return of trails containing
only specific keywords can be forced, as can the retrieval of trails whose pages exclude certain
keywords. The attribute syntax can also be used to provide more complex selection. For
example, the query “Computers -type=phdthesis -type=mastersthesis” would be equivalent
(using the DBLP webcase) to the SQL query

select * from publication
where type <> ’phdthesis’
and type <> ’mastersthesis’

This does not represent a major saving. However, a researcher who is trying to find the year
of publication of Brin and Page’s search engine paper (Brin and Page 1998) could find the
answer with a query such as “sergey anatomy”, whereas the full SQL required would be:

select year from publication, writes, author
where lower(author.name) like '%sergey%’
and lower(publication.title) 1ike '%anatomy%’
and writes.publication = publication.key
and writes.author = author.id

The DbSurfer expression represents a significant saving in time and complexity for the user,
whilst still returning the desired result. Using Oracle’s explain plan function (Gurry and
Corrigan 1996) to examine the actions of the Oracle database when performing this query
reveals that 8 operations are required to complete this query including a full table scan. Other
relational databases are likely to offer similar performance. In comparison, the DbSurfer
results require no database accesses to compute the trails, and require only 3 index-only
accesses to examine the relevant entries, showing that DbSurfer can provide results which
provide savings in database activity as well as user input.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 221
7.6 Examples

In order to highlight the differences between the varying keyword-based systems for index-
ing relational database content, Hulgeri’s lead has been followed in indexing the content of
a relational database containing DBLP data (Hulgeri, Bhaltoia, Nakhe, Chakrabarti, and
Sudarshan 2001; Ley 2002). The DBLP data is downloaded as an XML file! which is then
parsed to create the schema shown in figure 7.4. There are four tables in the schema. The
publication table holds details of all the journal, article and book entries; the author table
contains details of each individual author and the writes table links these together. The
citation table links publications with those which reference them.

<<RelationalTable>>
PUBLICATION

IKEY : VARCHAR2
1T YPE : VARCHAR2

CITING = KEY
<<RelationalTable>> <<RelationalTable>>

AUTHOR CITATION
0|T|TLE : VARCHAR2

ID : NUMBER 3
41D - NU |LABEL : VARCHAR2 _BOOKTITLE : VARCHAR2

ﬁl:;l:’\fElD VARCHAR2 ‘g PK = CITING,CITED OIPAGES : VARCHAR2
I = AIYEAR : NUMBER

/AADDRESS : VARCHAR2
CITED = KEY /4HOURNAL : VARCHAR2
5VOLUME : NUMBER
JOURNAL_NUMBER : VARCHAR2
ZMONTH : VARCHAR2 <

IURL : VARCHAR?2
SIEE : VARCHAR2
#4iPUBLISHER : VARCHAR2
: +INOTE : VARCHAR2
<<RelationalTable>> ISBN : CHAR

WRITES iSERIES_TITLE : VARCHAR2

[PK - PUBLICATION.AUTHOR AISERIES_URL : VARCHAR2
ISCHOOL : VARGHAR2

1g|CHAPTER : NUMBER

/EDITOR : VARCHAR2

AUTHOR = ID

PUBLICATION = KEY

PK = KEY

CROSSREF = KEY

Figure 7.4: UML diagram showing the DBLP Schema. The publication table stores details
of all the journal, article and book entries, indexed by the attribute key. The citation
table refers to two publication entries using the foreign keys cited and citing. Finally, the
Author table is indexed on the primary key id, and is linked to the publication table by
the writes table, whose foreign keys are publication, which refers to the key attribute in
the publication table and author which refers to the id field in the author table.

The DBLP interface is available to the public as a demonstration of DbSurfer’s potential.
This can be reached from the homepage for Birkbeck College School of Computer Science’s
Web Navigation Group?. Figure 7.5 shows results for the query “sergey anatomy”. The first
trail shows the entries for Sergey Brin and his much-cited paper “Anatomy of a Large Scale
Hypertextual Web Search Engine” (Brin and Page 1998). In this example, the remaining

! http://dblp.uni-trier.de/xml/
2 http://nzone.dcs.bbk.ac.uk/



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 222

trails are single-node trails describing other authors called Sergey and other papers with
anatomy in the title. Figure 7.6 shows results for the query “vannevar bush”. The first trail
is a singleton node showing the author entry for Vannevar Bush. The second shows his paper
“As we may think” (Bush 1945) in the context of a citation by a later work. The third trail

shows two papers describing work related to Vannevar Bush and Memex, both by James M.
Nyce.

J NavigationZone - DBLP - Microsoft Internet Explorer =101 x|
J File Edt Wew Faworites Tools  Help ‘j
| ok - = - @ [@ | Boearch [EgFavorites (Hristory | By S 0] - H 9 B
Jhgdrass !@ http: /inzone.des.bbk. ac.uk: 8061 jnzengine/dblpfnav/search ﬂ @Gn
J Links @] Customize Links g Free Hotmal 2] Windows Media @] Windows  @pRealFlayer
A ' NawSearch | TrailSearch | WisualSearch
@ \avigationZone, e —
Trail > Sergey Prin > dhsurfer(DBLP.WRl‘l‘IEél)E 16159 Anatomy of a LargeScale Hypertextual Web Search Engine.
JOUEIMAL WWWT f Computer Networks
Sergey Brin JOURNAL NUMBEE 1-7
db%;@gD:tfr:nv:RgiszarQBScale Hyperte KEY Joumals/er/Brink 33

A Fuzzy sets in human anatomy . BAGES 107-117

-5 Teaching anatomy using 30 computer simulz TITLE The Anaterny of a Large-Scale Hypertextual Web Search Engine
-2 Sergey Berezin TIPE article

2 Sergey Rybin URL hittp Hdblp. uni-trier. defdbifjournals/cn/en 30 him#Brin P88

2 Sergey Melnik VOLUME 30
|0 sergey Inffe TEAR 1598
-2 Sergey ¥, Sevastianov

-8 Anatomy of a Real ECommerce Systern.

‘2 Anatomy of 3 Mudular Multiple Query Optimiz

-8 The Anatomy of 3 Contextaware Application
Mavigation fone & 2000-2002

| _LI_I
@ [ [ e 7

Figure 7.5: Example results using DbSurfer for the query “sergey anatomy”.

It should be noted that the DBLP already has a search system designed specifically for
researchers’ needs. The DbSurfer system cannot hope to replace a custom system with its
default setup. The reason for choosing the DBLP as a demonstration is to allow better
testing and comparison with similar database-indexing systems. However, DbSurfer would
allow the rapid deployment of a search and navigation interface in situations where no such
interface exists. Also, DbSurfer can allow the development of a custom system by using XSLT
stylesheets to format results. In many cases, missing features and aggregation of results can
be added by constructing views at the database level.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 223

avigationZone - DBLP - Microsoft Internet Explorer =10] X

Edit  Mew Favorites Tools  Help ‘-

| e

J ek » = - @ 4 A& | Qhsearch [GfFavarites &4 History ‘%v =] = @
g

I

ils)

dress @] http:/jnzone. des. bk, ac.uki B3 inzengine/dblpjnavjsearch = @
Links @] Customize Links & Free Hotmal €] Windows Media & Windows  @pRealPlayer

NavSearch | Tralsearch | VisuslSearch

‘NavigationZgne,:. T —

Trail=Bush 1945 = As We May Think. > dbsurfer{DELP WRITES) » Yannevar Bush

~ JOUERNAL The Atlantic Monthly
-8 Wannewar Bush TOURNAL NUMEBEER 1
1 Bush 1945 EEY Jjournalsitheatlantic/Bushd5
As We vay Think.
dbsurfer{DBLA WRITES ) PAGES 101-108
vannevar Bush TITLE A We May Think
-8 From Memex to Hypertext: Understanding the TYPE article
8 Innovation, pragmaticism, and technological ¢ R ity Hdblp uni-trier defdb/journalsitheatlantic/the atlantic 176 htr#Bushd 5
8 dbsurfer(DBLP WRITES)
2 G tyce VOLUME 176

:% dhsurfer(DBELP.WWRITES) YEAR 1945
D From Memex to Hypertext: Understar

8 dbsurferiDELP WRITES)
8 Paul Kahin
"0 dbsurfer(DBLP.WRITES)
8 From Memes to Hypertext: Understar

A Paul Bush
-8 Martin Bush
-d Enc Bush
-8 Bush Jones
[&J. &, Bush
-QC, & Bush

Mavination fone & 2000-2002

X _>|;I
&1 ,_ ,_ i Internet 7

Figure 7.6: Example results using DbSurfer for the query “vannevar bush”.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 224
7.7 Evaluation

To evaluate the relative performance of DbSurfer, two experiments were performed, on a
server with 1GHz dual Pentium III processors.

In the first experiment, 20 papers were selected from those found in the DBLP corpus, with
the highest ranks in the ResearchIndex (CiteSeer) “most accessed documents” list. From
this list, 20 queries were constructed by taking the surname of the first author and 1, 2 or
3 significant keywords with which a user might expect to identify that paper. These queries
were submitted to DbSurfer for evaluation. They were also submitted to Hulgeri’s system for
Browsing ANd Keyword Search in relational databases (BANKS) (Hulgeri, Bhaltoia, Nakhe,
Chakrabarti, and Sudarshan 2001) and CiteSeer (Lawrence, Bollacker, and Giles 1999) for
comparison. The results are shown in figure 7.7. The key result is that DbSurfer performs
well (and outperforms BANKS and Citeseer) in finding requested references. The table shows
reciprocal ranks for the desired paper, in terms of the trail, page or cluster containing the
relevant citation. Only the first page of results was considered in each case, but this should
have minimal impact on the results. Times are shown as reported by each of the systems
concerned and are not strictly comparable, but are intended to be indicitive of the general
level of performance. Times are missing only for those queries for which the BANKS system
failed to return any results.

This result is encouraging, but may be misleading in places. The poor retrieval performance
of BANKS is largely due to its poor coverage as it indexes only a subset of the DBLP data set.
The poor performance of CiteSeer is due to an unnecessary dependence on boolean operations
which were not tested® The 21.38 second response time for the query “nilsson routers” is due
to bad configuration and behaviour of the JVM garbage collector. However, a top-and-tailed
average time of 1.2 seconds is still disappointingly short of the sub-second response time
expected. More worrying is that a third of queries failed to return the desired document in
any of the returned trails. However, over half the desired documents where identified in the
best trail for each query, suggesting that the trail-finding scheme can be highly effective.

The second experiment provided a closer analysis of the times taken to compute the results.
By isolating two papers and requesting them with a decreasing number of keywords, the times
taken to perform each component operation could be analysed. Computing scores for nodes
takes around 50% of the total processing time, with the trail finding taking around 30%,
computing the text summaries around 15%, filtering redundant information around 2%, with
the remainder being taken up by system overhead, XML transformation and presentation.
Increasing the number of keywords causes a limited increase in the time to compute page
scores, but this impact is dwarfed by other factors. One other interesting result is that as
the number of keywords increases so does the fraction of nodes in the returned trails which
are distinct for the entire trailset. Only extensive user testing will confirm whether this is a
positive feature.

3 See section 6.6 for a justification of the evaluation criteria.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 225

DbSurfer Banks Citeseer
Query 1/Rank Time | 1/Rank Time | 1/Rank
crescenzi ip lookup 0.00  0.40 0.00 11.77 0.13
web database florescu 0.33 1.33 0.00 0.00
brin anatomy 1.00 0.35 0.00 0.00
digital libraries lawrence 0.00 1.74 0.00 0.00
waldvogel ip routing 1.00 0.77 0.00 0.33
rivest cryptosystems 1.00 1.22 1.00  2.93 0.25
web mining cooley 0.00 1.59 0.00 1.00
broch routing 1.00 1.43 0.00 0.93 0.06
deerwester latent semantic analysis 1.00 1.13 0.00 12.27 0.20
agrawal mining 0.33  2.20 0.00 0.00
bryant boolean function 1.00 0.70 0.00 0.00
nilsson routers 0.00 21.38 0.00 0.93 1.00
rcs tichy 1.00  0.93 0.00 1.32 1.00
traffic leland 1.00 0.99 0.00 0.00
joachims support vector 0.00 1.17 0.00 10.27 0.06
traffic paxson 1.00 0.69 0.00 0.00
time elman 0.00 1.78 0.00 1.84 0.00
workflow georgakopoulos 1.00 1.60 0.00 1.00
ferragina b-tree 1.00 1.31 0.00 13.18 0.20
fraley clusters 0.00 0.72 0.00 0.00
Average 0.58  2.17 0.06 6.16 0.26

Figure 7.7: Comparison of reciprocal rank and total time taken for 20 citation-seeking queries
on DbSurfer, BANKS and CiteSeer.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 226
7.8 Hierarchies, Taxonomies and Ontologies

The trails generated from the link structure of a hypertext perform well for corpuses where
such structure is prevalent, but fails in situations where documents are not strongly inter-
linked. The join dependencies in a relational database also provide suitable linkage informa-
tion to allow the construction of trails.

Many documents exist in separate proprietary databases such as document management sys-
tems or CMSs where neither hypertext link information nor relational constraint exist. Such
documents may however, be classified in a hierarchical, ontology, tazonomy or classification
tree. Examples of well known classification trees on the Web include DMOZ and Yahoo.
Examples of other taxonomies include the Dewey Decimal Classification or the classification
for animal and plant life-forms. Some corporate information systems and CMSs, such as Mi-
crosoft’s SharePoint (Microsoft Corporation 2001) or Verity’s K2 (Raghhavan 2001) provide
the facility to associate documents with categories stored in a hierarchy. Recently there have
been attempts to provide a standards-based XML representation for this kind of information
using the Web Ontologies Language (Smith, McGuinness, Volz, and Welty 2002).

Some strategies for linking documents have been developed based upon the categories under
which they appear. These links can then be used to construct trails. A prototype system,
called Vertical Trailer has been developed to test these principles. The system is working,
but is still to be subjected to experimental evaluation of its effectiveness.

Vertical Trailer takes as its input an XML file describing two basic structures. The first
of these describes a taxonomy (also referred to as a classification tree or hierarchy) where
categories may be associated with subcategories. For example, the category “finance” might
have subcategories of “taxation”, “acquisitions” and “invoices”. An example taxonomy is
shown in figure 7.8. The second structure is a classification map identifying those categories
in the taxonomy to which documents in the corpus belong, an example of which is shown in

figure 7.8.

Figure 7.8: Example of a taxonomy

This input can be treated as a 4-tuple, (C,D,T, M) where C = {ci,c3...¢,} is a set of
categories in the classification tree. D = {d;,ds2...d,} is a set of documents; 7' : C — p(C)
is a function defining the tree, taking a category and returning a list of subcategories; and
M : D — p(C) is a function defining the position of a document in the classification tree,
taking a document and returning a set of categories. All categories and documents are
associated with a unique identifier (ID), allocated sequentially as described in chapter 3.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 227

10

11

12

HYR A

Figure 7.9: Example of documents mapped to the taxonomy shown in Figure 7.8

These are allocated such that no two documents may have the same ID, no two categories
may have the same ID and no document may share an ID with any category. The numbers in
the example diagrams all refer to such identifiers. This information is now used to construct
a new graph over which trails can be generated.

7.8.1 Generating the Link Graph

Consider a set of categories arranged in a hierarchy and a set of documents classified according
to this taxonomy. Each category is associated with a number of subcategories and each
document may be associated with a number of categories. The predicate Parent : C —
{T, L} denotes that y is a subcategory of z and is defined by the formula Parent(z,y) =
y € T'(z). From these definitions, a new graph can be defined on which to run the Best Trail
algorithm, incorporating links for various relationships. A summary of these relationships is
given in figure 7.10.

Condition Link

Parent(C;, Cj) Ci — Cj
DZ’ECk/\DjECk/\Di;éDj D; — D
D; e Cp, A Parent(Ck, Cj) D; — Cj
D; € Cy NDj € Cy A Parent(Cy,Cr) ND; # Dj | Dj — Dy

Figure 7.10: Conditions under which links are added to the Vertical Trailer graph.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 228

A link, C; — Cj, is created between each category and its subcategories. Links are also
generated between each category, C7 and each document, D;, assigned to it. This defines the
basic tree through which trails can be constructed.

Additional links are optional, but appear to improve the quality of results. For example, a link
is generated between any document, D;, and the subcategory, C;, of the category, M(D;), to
which that document is assigned. This allows a single trail to flow through both the document
space and the taxonomy space. Generating links between any pair of documents, D; and D),
which are in the same category allows trails to flow through many documents at each level of
the taxonomy.

Given a graph consisting of these links, and an appropriate text index of the document’s
content, the Best Trail algorithm can be used to construct trails as shown previously. Brief
investigations have been carried out into the effectiveness of all these strategies and whilst
much work remains in testing the overall effectiveness of the system, preliminary results
suggest that the trails are most useful when graphs are generated containing each of these
four types.

The last link type investigated was an attempt to link every document, D;, to each document,
D; in a subcategory of the category, M(D;), to which D; was assigned. This allows the
Best Trail algorithm to construct shorter trails leading only through relevant documents, but
omitting the categories removes valuable contextual information and is not recommended.

7.8.2 Graph Construction Algorithms

The links for the first two relationships are found during the parsing of the XML file repre-
senting the input (algorithm 12). Lines 2 to 6 map to the parsing of the category structure,
whilst lines 7 to 11 correspond to the parsing of the document classifications. The writeLink
method is used to create an initial set of outlinks, E, forming a temporary graph, G = (N, E)
where N = C U D. An example of such a graph is shown in figure 7.12.

Algorithm 12 (Parser(C,D,T, M))
1. begin

2 foreach c € C

3 foreach s € T'(c)
4. writeLink(c, s)
5. end foreach

6 end foreach

7 foreach d € D

8 foreach ¢ € M (d)
9. writeLink(c, d)
10. end foreach

11. end foreach

12. end.

Figure 7.11: Algorithm to create a directed graph from a document classification hierarchy.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS

Figure 7.12:

4 DI

3 8 10

11

12

classification map.

Algorithm 13 (SameClass(C,D, N, E))

® NSO WD

9

10.
11.
12.
13.
14.
15.

begin
foreachn € N
ifneC
foreach (n,0) € E
ifoe D
foreach (n,p) € E
ifpeD
writeLink(o, p)
end if
end foreach
end if
end foreach
end if
end foreach
end.

Figure 7.13: Algorithm to add links between documents with the same classification.

229

Directed Acyclic Graph (DAG) formed from the union of the taxonomy and



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 230

Algorithms 13 and 14 use this graph to compute the remaining links. The results to the
questions, n € C? and n € D? can be solved using a lookup table constructed during the
parsing stage. Hence, if an average outdegree of % is assumed, then by definition algorithm 12
takes times O(F) both on average and in the worst case, whilst algorithm 13 takes time O(%z)
in the average case. This tends to the worst case of O(E?) as the link density increases or as
the outdegrees of nodes in graph become less uniform. Algorithm 13 takes time O(%) which
tends to a worst case of O(E?) under similar circumstances.

Algorithm 14 (SubClasses(DB))
1. begin

2 foreachn € N

3 ifneD

4 foreach (c,n) € E

5. foreach (c,s) € E

6. ifseC

7 writeLink(n, s)

8 foreach (s,d) € E
9

1

9

. ifde D
0. writeLink(n, d)
. end if
10. end foreach
11. end if
12. end foreach
13. end foreach
14. end if
15. end foreach
11. end.

Figure 7.14: Algorithm to add parent-child links to a classification hierarchy graph.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 231

10

N ///\\
N7 e

12

Figure 7.15: Graph used for trail discovery. Blue, red and green arrows denote links for the
third, fourth and fifth conditions in figure 7.10, respectively.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 232

7.9 Related Work

Recent work at Microsoft Research, at the Indian Institute of Technology, Bombay and at
the University of California has resulted in several systems similar to DbSurfer in many ways.
However, DbSurfer differs greatly in the design of the algorithms and in the style of the
returned results. DbSurfer also offers the opportunity for intergrating both Web site and
database content with a common interface and for searching both transparently.

BANKS was developed by the Indian Institute of Technology (Hulgeri, Bhaltoia, Nakhe,
Chakrabarti, and Sudarshan 2001). Each result in the BANKS systems is a tree from a se-
lected node, ordered by a relevance function which factors in node and link weights. Mragy-
ati*, also developed at the Indian Institute of Technology, uses a similar approach in which
keyword queries are converted to SQL at query time (Sarda and Jain 2001). This approach
has some notable advantages. It guarantees that all data being searched on is fresh, whereas
DbSurfer only ensures that the displayed data is fresh — the data in the inverted file will
need to be periodically updated to ensure that it is not “stale”. The authors claim that the
approach “is scalable, as it does not build an in-memory graph”. This is a legitimate criti-
cism of DbSurfer’s approach. However, allowing almost arbitrary selection of attributes for
querying and relying on the databases own indexes restricts the indexing of binary fields to
those supported by the database (usually in non-standard components) and makes full-table
scans probable, introducing a new problem in scalability and response time.

DBXplorer (Agrawal, Chaudhuri, and Das 2002) was developed by Microsoft Research, and
like BANKS and Mragyati, it uses join trees to compute an SQL statement to access the data.
The algorithm to compute these differs, as does the implementation, which was developed for
Microsoft’s Internet Information Services (IIS) and SQL Server — the others were implemented
in Java. DbSurfer does not require access to the database to discover the trails, only to display
the data when user clicks on a link in that trail.

DISCOVER is the latest offering and shares many similarities to Mragyati, BANKS and
DbXplorer, but uses a greedy algorithm to discover the minimal joining network (Hristidis and
Papakonstantinou 2002). It also takes greater advantage of the database’s internal keyword
search facilities by using Oracle’s Context cartridge for the text indexing.

Goldman et al. have also introduced a system for keyword search (Goldman, Shivajumar,
Venkatasubramanian, and Garcia-Molina 1998). Their system works by finding results for
queries of the form z near y (e.g. find movie near travolta cage). Two sets of entries are
found — and the contents of the first set are returned based upon their proximity to members of
the second set. In comparison to DbSurfer, there is no support for navigation of the database
(manual or assisted) nor any display of the context of the results.

The join discovery problem is related to the problem tackled by the universal relation (UR)
model (Ullman 1989; Levene 1992). The idea underlying the UR model is to allow querying
of the database solely through its attributes without explicitly specifying the join paths.
The expressive querying power of such a system is essentially that of a union of conjunctive
queries (Sagiv 1983). DbSurfer takes this approach further by allowing the user to specify
values (keywords) without stating their attributes and providing relevance based filtering.

4 Sanskrit for “Search” or “Hunt”



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 233

Goldman and Widom 2000 outlines an approach for a related problem, of allowing structured
database queries on the Web. WSQ/DSQ (pronounced “wisk-disk”) is a combination of
two systems for Web-Supported and Database-Supported Queries. WSQ allows structued
queries on Web data, by creating two virtual tables, WebPages(SearchExp, T1, Ty ... Ty,
URLRank, Date) and WebCount(SearchExp, T1, Ts ... T, Count), both of which can be
queried alongside normal RDBMS tables. A similar approach to Goldman and Widom’s is
adopted by Squeal, which provides page, tag, att, 1ink and parse tables which can be
queried using SQL (Spertus and Stein 2000).



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 234

7.10 Future Work and Concluding Remarks

Two systems have been described — DbSurfer and Vertical Trailer.

DbSurfer extracts data from relational databases in the form of an inverted index and a graph
of foreign key dependencies. This data can then be used to construct trails of information,
solving the join discovery problem and allowing free text search on the contents. These
facilities can be used directly, or as the foundation for a customized interface.

Vertical Trailer takes XML files describing taxonomy and classification maps, which can be
produced from systems such as CMSs. These are then used to construct a graph on which
the Best Trail algorithm can be run.

The two systems have a great deal of potential for providing search and navigation facilities
in various environments. However, several improvements are possible:

7.10.1 Queries

DbSurfer does not handle numbers very well — it does not handle range queries and works only
using the text representation. This situation could be improved by following ideas presented
in Agrawal and Srikant 2002. The system described recognizes numbers in both documents
and queries and looks for close matches.

This strategy could be extended to other formats by mapping them to numeric values. Dates
and times can be mapped to various numeric schemes, such as the number of time units
elapsed since some predefined event or time. The number of milliseconds since 1st Jan 1970
00:00 GMT is a common example of such a system. Repetitive dates and intervals such
as the 1980s, 40 days or Q3 require more thought. Mapping between equivalent unit types
would also improve the quality of the results. For example, recognizing the equivalence of the
measures 1 foot, 12 inches or 300mm. This type information could be transmitted as part of
an XML Schema.

Colour equivalence and proximity could also be handled in this way allowing, for example, red,
scarlet and vermillion to be recognized as being closely related. This might be accomplished
using a multi-dimensional representation, such as Cyan Magenta Yellow Key (CMYK), Hue
Separation Value (HSV) or Red Green Blue (RGB) (Foley, van Dam, Feiner, and Hughes
1990).

Given attribute-value pairs in the inverted file, some aggregate functions can be implemented
by combining values at query time. An alternative strategy is to index views created at the
database level, but this requires a good understanding of the values which are likely to be
aggregated.

7.10.2 Presentation

Some presentation issues exist for the row display servlet. Backlink handling, for example,
is an issue. When navigating the database structure it should be possible to examine those
rows which reference a given attribute. This can be achieved by using a separate servlet
to generate the list of rows, which might operate by submitting another query with the



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 235

command link:currenturl. This would return a list of rows which reference the current
page’s underlying row. With the appropriate query modification, this could be extended to
restrict entries to the user’s requirements.

Another issue is the handling of multipart keys. Each foreign key field is currently displayed
as an outlink. However, this method of display does not extend to multipart or composite
keys. In particular, it will not work for composite keys where one of the component attributes
is a foreign key for some other table. In such a situation it is unclear where the destination
of such a link should be.

7.10.3 Security

Security is a major issue. By constructing a single index the fine-grained access controls
employed by the database are removed. Since all indexing is done through a single user
account, the access rights for all DbSurfer users are equivalent to the access rights of that
user. One possible way to restore some of the fine-grained security may be to allow each user
to view the data only under the database username and password which they supply. Such
a system might be implemented using container managed security which is part of the J2EE
standard. This would require some very simple server configuration and a view on the data
dictionary tables of the underlying RDBMS. However, this is not a complete solution as it
would only affect the display servlet. This would need to be expanded so that rows which
could not be displayed were never presented to the user. This would have a noticable impact
on performance. However, failure to do this would have two negative implications. Firstly,
the system would present users with data which they could not access (this being analogous to
returning 404s in a Web search engine ). Secondly, it might be possible to infer information
without the rows being displayed. For example, if a company had an invoices table indexed,
simply the presence of an entry (for example payee=enron or reason=takeover) might be
considered damaging. Until these issues are resolved, the efficient indexing of secure data for
unstructured search will be highly problematic.

7.10.4 Closing the Loop

DbSurfer and Vertical Trailer provide trail-based free-text search and navigation facilities in
relational databases and classification based CMSs respectively. A complementary problem
to the issues addressed by these systems is enhancing the database to provide these facilities
internally. Approaches exist for unstructured search in many databases (Masier and Simmen
2001; Hamilton and Nayak 2001; Raghhavan 2001; Koch and Loney 2002). One such system
is OracleText (Koch and Loney 2002), which is supplied with Oracle9i and provides keyword
indexing facilities for individual field entries in a table. Indexes are constructed using a SQL
Data Definition Language (DDL) command such as :

create index i_emp
on emp(ename)

SHTTP return code 404 means Page not found



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 236

indextype is ctzsys.ctzcat

The data can be retrieved using an SQL command such as :

select * from emp
where contains (ename,’ fred') >0

Two types of index are supported — contert and ctzcat. Context indexes are suitable for
large text fragments and have indexes which must be manually updated. An external index
such as that provided by DbSurfer could feasibly replace the search facilities provided by
context indexing whilst adding navigation and join-discovery facilities. Ctxcat indexes provide
transactional synchronization of index and table data and are thus considerably more difficult
to replace.

Context indexes can be replaced by defining functions in the database which make calls to the
navigation engine using the Simple Object Access Protocol (SOAP). SOAP is an XML-based
system for Remote Procedure Calls (RPC). These calls would be made to return trails which
would then be converted into tables of objects, with an appropriate schema such as that
described in Heather and Rossiter 1990. It is theoretically possible to replace ctxcat indexes
using trigger mechanisms attached to the table entries, but the development of a generic
approach for applying this technique has yet to be established. Figure 7.16 shows how the
new system would fit into the existing framework (figure 7.2), thus “closing the loop”. Data
will be able to flow from the database, though the database indexer to the navigation engine,
then from the navigation engine back to the database.

7.10.5 Concluding Remarks

Two systems have been presented for handling data extracted from databases. DbSurfer is a
powerful system for keyword search and navigation through relational databases. DbSurfer
solves the join discovery algorithm by discovering Memex-like trails though the graph of
foreign-to-primary key dependencies. This allows queries to be answered efficiently without
relying on a translation to SQL. Vertical Trailer is a prototype system for trail discovery on
data from document management systems where documents are associated with categories.
Both systems find trails in non-hypertext areas where the use of such paths has previously
received little attention.



CHAPTER 7. SEARCH AND NAVIGATION IN DATABASE SYSTEMS 237

| -HTnmy, Page

Web Site(s)

Crawler
/ Robot

Display
Servlet

Index

3
§ DB " ““,‘\\!“’?3'S - Builder
— Re, & Reader w g
Suly Se,
ceva ts
N 'SQL .. /"% é =
.. @ s

Relational

Database 7_ Inverted File
Z
%

&
$

Query
Engine

Trail
Engine

o¥es
page S

Figure 7.16: Revised architecture of DbSurfer.



Chapter 8

Trails and Program Comprehension

If debugging is the art of removing bugs,
then programming must be the art of inserting them.

Unknown

An apprentice carpenter may want only a hammer and saw, but a master crafts-
man employs many precision tools. Computer programming likewise requires
sophisticated tools to cope with the complexity of real applications, and only
practice with these tools will build skill in their use.

Robert L. Kruse, Data Structures and Program Design

Don’t get suckered in by the comments — they can be terribly misleading. Debug
only code.

Dave Storer

238



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 239
8.1 Introduction

The previous chapters have discussed the navigation problem in hypertext and Web sites. A
similar problem exists in automatically-generated corpuses such as program documentation.
Program documentation, like other online support systems, provides the opportunity for
enhanced productivity. However, users often take longer finding the required information
in such systems than they would in conventional paper-based documentation (Tomasi and
Mehlenbacher 1999).

Javadoc (Friendly 1995) is one such system, designed to document the APIs of programs and
classes written in the Java programming language. This chapter describes AutoDoc — an
indexing tool for Javadocs which provides the same functionality as provided for Web sites.

If Javadoc-style program documention, which is derived from source code, can be indexed,
it seems logical that the source code itself can be indexed. Source code has a long history
of hypertext representation, having being shown in Engelbart’s 1968 demo. Using Nelson’s
definition, it could even be considered a hypertext! It is certainly “interconnected in such a
complex way that it could not conveniently be presented or represented on paper” (Nelson
1965). This chapter investigates these connections, and presents AutoCode — a companion
tool for AutoDoc, which indexes Java source code and presents trails between the classes.

The rest of this chapter is organized as follows:

Section 8.2 gives important background information — describing various concepts associ-
ated with Object Oriented Programming (OOP) and Java, including the various types
of coupling which connect the classes, and the Javadoc program used to build the on-line
documentation.

Section 8.3 presents AutoDoc, with examples on the JDK 1.4 Javadocs.

Section 8.4 describes AutoCode — including the principles and architecture of AutoCode;
examples of AutoCode on the JDK 1.4 source code and details of a user study.

Section 8.5 describes experiments into the graph structure of code, revealing a Web-like,
scale-free topology replete with power-law distributions.

Section 8.6 summarises a study in which the the Potential Gain was used as a metric to
identify key classes and potential candidates for refactoring. This shows the utility of
the AutoCode data and of the work described in chapter 4.

Section 8.7 concludes with ideas for future work.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 240

8.2 OOP, Java and Object Coupling

8.2.1 Object Oriented Programming

The phrase Object Oriented Programming (OOP) describes the use of programming languages
and techniques based on the concept of an “object” (Howe 1993). A program is written in
an Object Oriented (OO) language by specifying “classes”. A class is an Abstract Data
Type (ADT) — a type whose internal form is hidden behind a set of access functions or
“methods”. Objects are instances of the class type which are created and inspected by calls
to these methods. In theory, this allows the implementation of the type to be changed without
requiring changes to the API, and consequent changes to external code which manipulates
the objects. Well encapsulated classes allow operations only via these methods. Poorly
encapsulated classes expose the internal structure, state and implementation in their APIs.

The OOP style of programming and philosophy of encapsulation can be implemented in
non-O0 languages. OO languages feature improved support for OO constructs, and enforce
certain styles of programming considered beneficial. The history of OO languages started
with SIMULA-67 around 1970. Smalltalk, another creation of Xerox PARC became highly
popular before the advent of C++4 and Java made OO pervasive.

8.2.2 Java

The name “Java” can be said to encapsulate the amalgamation of four different things — a
programming language, a virtual machine (the JVM), a security model and a huge class library
(Zawinski 2000). The Java language is a simple, architecture-neutral, OO language with a
syntax similar to that of C++4-. It was developed by James Gosling of Sun Microsystems during
the early 1990s. The Java compiler generates architecture-neutral object files consisting
of bytecode instructions which the JVM translates into native machine code, providing a
separate platform for deploying applications which can run on Unix, Microsoft Windows or
Macintosh systems.

The Java class libraries provide implementations of common functions required for many pro-
grams. There are classes for I/O, sound, printing, communication with relational databases,
graphics, Ul design, security and interprocess communication. The Java class library which
ships with JDK 1.4 represents some 1.4 million lines of code spread over 6 000 classes.

Further information on Java can be found in the comp.lang. java newsgroup, on the java.sun.com
Web site or in Flanagan 1997.

8.2.3 Coupling

Classes and objects in OO systems do not work in isolation. The classes are “coupled” to
each other by various dependencies. The term “coupling” also represents the degree to which
these components depend on one another. Loose coupling is desirable for code maintenance
and comprehension but tight coupling may be necessary for performance reasons. Coupling is
increased when the data exchanged between components becomes larger or more complex. Too
much coupling is indicative of a poorly thought out design and there is evidence to suggest



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 241

that it can lead to more fault-prone software (Briand, Devanbu, and Melo 1997; Briand,
Daly, and Wust 1999; Harrison, Counsell, and Nithi 1998). The Java language couples classes
together with the following relationships:

Inheritance A class is a blueprint or prototype that defines the variables and the methods
common to all objects of a certain kind. Inheritance provides the ability to derive new
classes from existing classes. A “derived class” or “subclass” inherits state and behavior
from a “base class” or “superclass” in the form of instance variables and methods. A
subclass A extends a class B, adding new methods and instance variables. Subclass-
superclass relationships are often modelled by saying that A is-a B. For example a
FileInputStream is-a InputStream.

Multiple inheritance is the ability of a subclass to extend and inherit state and behaviour
from more than one superclass. As Java does not support multiple inheritance and
provides an implicit base class for all objects, in the form of the java.lang.0bject
class, the subclass-superclass relationships form a strictly tree-shaped “class hierarchy”.

Interface An interface is a collection of method and constant declarations, without imple-
mentations. It acts as a contract between classes. When a class implements an interface,
it promises to implement all of the methods declared in that interface. Although Java
does not support multiple inheritance of classes, it does support multiple interfaces,
encouraging delegation. A class A implements an interface B.

Parameter In Java, all objects are manipulated by references. A reference to an object of
class type A may be passed to a method of an object of class type B. This creates a
dependency between the classes B and A.

Return Type Similarly, a method of an object of class type B may return a reference to an
object of class type A. This object may have been created by the method, or may have
existed previously. This behaviour also creates a dependency between B and A.

Aggregation References to objects may also be stored in an object’s data fields. A coupling
between classes of types A and B may be created when the definition of class A states
that a reference to a class of type B is stored. This allows classes to be aggregated
together to build up more powerful classes and is often categorized by the expression
that A has-a B.

8.2.4 Refactoring

The term refactoring refers to a technique for improving code quality by making changes to
the internal structure of the software without changing its external behaviour. Refactoring
can be used to improve software design by, for example, moving code between classes, ex-
tracting code into new methods or classes or altering the position of classes in an inheritance
hierarchy. Refactoring therefore leads the programmer to work more deeply on understanding
what the code does and is thus an aid to maintenance and reuse (Johnson and Foote 1988).
The potential benefits of carrying out refactoring are reduced duplication of code, improved
readability, faster development and fewer bugs.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 242

In terms of seminal refactoring literature, the work of Opdyke and Johnson describes a number
of software refactorings (Opdyke 1992; Johnson and Opdyke 1993b; Johnson and Opdyke
1993a). Fowler, Beck, Brant, Opdyke, and Roberts 1999 describes seventy-two types of
refactoring and illustrates each type with examples and UML notation. Recent empirical
work in the refactoring area and its automation is found in Tokuda and Batory 2001 and
in Najjar, Counsell, Loizou, and Mannock 2003, the opportunities, benefits and problems of
refactoring class constructors was investigated.

8.2.5 The Jakarta Project

The Jakarta Project creates and maintains open source solutions on the Java platform for
distribution to the public. Products are developed and distributed through various subpro-
jects, each of which has its own team of developers. Two of the most notable projects are
Ant and Tomcat.

Apache Ant (Apache Software Foundation 2003; Bailliez et al. 2002) is a Java-based build
tool. It behaves in a similar way to Make but without some of the associated problems.
Make tools are inherently shell-based. They evaluate a set of dependencies, then execute
shell commands. Ant is different in that, instead of using shell commands, it uses XML-based
configuration files, which define various tasks to be executed. Ant is extended by writing Java
classes which define these tasks. This system sacrifices expressive power for portability. The
source code for Apache Ant contains 145 000 lines of code spread over 500 classes.

Tomcat is the servlet container used in the official reference implementation for Java Servlets
and JavaServer Pages (JSPs). Java servlets are typically small programs that are used to
dynamically generate Web content. For example, a servlet may collect data from a database,
manipulate the data and format the data as a Web page. Servlets are seen as more portable
than CGI scripts, easier to secure and avoid slowdown issues due to application loading. The
JSP APIs allow developers to create HTML or XML pages that combine static page templates
with dynamic content by embedding special JSP tags. The source code for Jakarta Tomcat
contains 150 000 lines spread over 370 classes.

8.2.6 Java Documentation Systems

The documentation process is an important part of any software development. Extensive
documentation of any program is essential if it is to be maintained and enhanced. To meet
this demand, many companies and organizations are using tools capable of producing Hyper-
text documentation, typically in HTML format. Such documentation is typically generated
from special markup in the code. One of the best known examples of such a system is the
Javadoc (Sun Microsystems Inc. 2001; Friendly 1995) tool shipped with all versions of the
Java Development Kit (JDK). Exploration of the Google index reveals over 800 examples
of documentation sets created with Javadoc with over 200 000 HTML pages between them.
Given that many such archives are firewalled or restricted from robots, the true number is
likely to be much higher.

Javadoc comments are written in HTML and precede class, field, constructor and method
declarations. They usually consist of a description followed by block tags such as @param,



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 243

@return, and @see (which document a method’s parameters return-type and related items,
respectively).

Javadoc supports extensions in the form of Doclets. These can alter the style of the displayed
documents, including source code annotation and syntax highlighting; write data in new
formats, such as PDF, IATEX or XML; perform sanity and style checks or compare versions.
Doclets define certain methods which enable them to run with the Javadoc program.

DocFather is a search utility developed by Siteforum Inc. It was originally created by Frank
Schruefer and Dirk Schlenzig and first released in 1996. It was developed because it took too
long to find the desired content by conventional browsing and no search utility was available
for Javadocs. It provides search facilities for Java documentation and highlighting of keywords
in the returned pages, but provides no summaries for search results, no contextual information
in the display of results and no guide to the structure of the code of related classes.

Doxygen is a documentation system for C++, C, Java and Interface Definition Language
(IDL). It also generates on-line documentation from documented source files and features
support for generating output in HTML, Rich Text Format (RTF), PostScript, PDF and
Unix man pages.

Further information on documentation systems and related techniques for program compre-
hension and source code analysis can be found in the proceedings of conferences such as
the Source Code Analysis and Manipulation workshop (SCAM), the Internation Conference
on Software Maintenance (ICSM), the International Workshop on Program Comprehension
(IWPC) and the Working Conference on Reverse Engineering (WCRE).



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 244

8.3 AutoDoc

Tools such as DocFather help in finding information but fail to provide continuous support or
context. Presentation of the entire documentation structure in a graph or a hyperbolic tree
presents problems of information overload or graph confusing.

Logistical problems of regular indexing and providing total coverage are exaggerated with the
generated content of Javadocs as the entire corpus is likely to change with any one update,
rendering incremental crawling techniques useless. Fortunately the small size of the corpuses
means they lend themselves well to complete reindexing, although duplicate detection schemes
can reduce the overhead.

Program documentation corpora are often highly interlinked. Links are created in Javadocs
due to package structure, class inheritance and type references. This is of great benefit if the
information can be harvested correctly, as a link exists in most cases where the relationship
between the classes suggests one should. Hence, a greater number of potential trails also
exist. Filtering this increased density of link information provides the challenge.

This is achieved in the AutoDoc tool — a search and navigation tool created by combining the
Best Trail algorithm with a set of heuristics customized for on-line documentation. Rules are
set which force zero-relevance of known pages, alter title and heading display and eliminate
starting points. The improvements and heuristics made to customize AutoDoc have now been
incorporated into the Web site navigation tools.

Figure 8.1 shows the AutoDoc results for the query SQL on the JDK 1.4 Javadocs using each
of the tree interfaces discussed in chapter 6. More examples of AutoDoc can be found at Web
Navigation Group’s homepage .

AutoDoc allows increased productivity while programming, being quicker and more flexible
than using a book or manually navigating the on-line documentation. It is thus ideal for
experienced users who want answers quickly, as well as providing a smooth introduction to the
language for novice programmers. It also helps to expand developers’ knowledge by providing
contextual information such as relevant classes in the hierarchy, implemented interfaces and
external specifications, giving pedagogic value as a teaching tool.

"http://nzone.dcs.bbk.ac.uk/



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 245

Fle Edi View Favortes Tools Help

Bk v = v Y | Qisearch

avortes Bristory | (7

File Edt Wiew Favortes Tools Help \

Nav Search | Trail Search | Standard Search |

Trail > QUHM Jnvn 2 Platform sE v1.4.0) > Array (Java 2 Plnform SE v1.4.0) > Types (Java 2 Platform SE v1.4.

s 5QLInput (Java 2 Platform SE v14.0)
String readString() Reads the next atribute in the stream and retums it as a String in the Java prograring
language...If the datur is an SQL structured or distinct type, it determines the SQL type of the datum at the
head of the stream
hitp/193.61.29.89/javadocs/apifjava/sql/SQLinput him

Atray (Java 2 Platform SE v1.4.0)

By defaul, an Array value is a Iransaction-duration reference o an SQL ARRAY value.. String

oniBasTyseNsyisq Reevet 1 8QLyno aate o e seens e ey desinels e Ay
ject

o 29.83/avadocs/apiavarsglaray himl
s Types (Java 2 Platform SE v1.4.0)
Field Summary static int ARRAY The constant in the Java programming language, somefimes referred to as
atype code, that identfies the generic SGL type ARRAY. static int BIGINT The constant in the Java,
programming language, sometines referred
hitp:133 61.29.63/avadocs/apijavalsqiT

Agdress [&] ntipnzane des bbk ay=sa A @6 [|Links ™)
Navxgat\onZone ,[ﬁi—iu e )

Trail >SQLInput (Java 2 Platform SE v1.4.0) > java.sql{Java 2 Platform SE v1.4.0) > Types (Java 2 Platform SE v1.4.0)

s SQUInpu (Java 2 Plaform SE v1.4.0)
String readString( Reads the next atrbute in the stream and returns it as a String in the Java programming
language...Ifthe datum is an SQL structured or distinct type, it determines the SQL type of the datum at the
head of the stream.
hitp://133.61.29.83/javadocs/apifavalsgl/SQLinpu

s [ava sol(Java 2 Platform SE v1.4.0)
Connection A connection (session) with  specific database... What the java.sql Package Contains The
eVl package conianw AP 6 i g Maki o copmecton it 8 catsnata; s

DriverManager facilty DriverManager class

133.61.29.89/javadocs/apljavalsalipackat

Tupes (Java 2 Platform SE v1.4.0)

Field Summary static int ARRAY The constant in the Java programming language, sometimes referted to as
atype code, that dentifies the generic SQL type ARRAY. static int BIGINT The constant In the Java
programming angusge, someines refemed

133.61.29.89/avadocs/apljavarsqlTypes himl
Trail >java.sgl(Java 2 Platform SE v1.4.0) > Java 2 Platform SE v1.4.0) > Java 2 Platform SE

v1.4.0) > Types (Java 2 Platform SE v1.4.0)

s [ava 50(Java 2 Platform SE v1.4.0)
Connection & connection (session) with a specific database._What the java sql Package Contains The

Goack v =+ @ [7) Y| Qsearch (Firavortes (Fistory [y &

Autiess [&] /A navigationzone nel/ A @ 6o ||Links )

TrsilSuaet > s > Ty

MavSearch | Tralsearch

@ NevigationZone,, B —

Overview Class Use Tree Deprecated Index Help Java™ 2 Platform
PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES Std. Ed. v1.4.0
Package java.sql
Provides the API for accessing and processing data stored in a data soutce (usually a
relational database) using the Java™ programming language.
See:
Deseription
Interface Summary
v The mapping in the Tava programming language for the SQL
Array. type ARRAY.
The representation (mapping) in the Tava™ programming
Biob
language of an SQL BLOB value.
C The interface used to execute SQL stored procedurs
- The mapping in the Java™ programming language for the SQL
vl CLOB type.
L5 T C i A conmection (session) with a specific database.
i
e L [o Data |C hensive information about the database as a whole.
‘?_‘;”;f; Driver The interface that every driver class mast fmplement.
e A1 object that can be used to get information about the types =
< I

[ [® wemetzone

&

| [ [® iternet zone

(a) TrailSearch

Fle Edi Miew Favortes Tools Help

(b) NavSearch

<mBack v =5« @ [7) (Y| Qsewen

wvortes ¢Hisony | [

Adress [€ ntpiinzane-richard/graphuisgi itm

A @60 |Juinks >

Interface SQLInput

Interface Array
|

Package java.sql

Interface CallableStatement

Class Types

Interface SQLData

Uses of Class java,sql SQLException
Interface Connection

Interface SQLOutput

Interface Statement

Interface Ref
V4

Interface PreparedStatement

Interface ResultSet

[ [ % cosarintranet zone

(c) VisualSearch

Figure 8.1: Three user interfaces for AutoDoc, showing results for the query “sql”. The
results show the JDBC classes. By examining the links between pages on the trails, the user
can gain a better understanding of the connections between the classes.




CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 246

8.4 AutoCode

AutoCode is a more advanced tool for visualizing and searching within Java source code. It
works using a version of the Best Trail Algorithm which supports multiple graphs.

8.4.1 Architecture

AutoCode indexes the Java code using a doclet containing the complete post-process archi-
tecture described in chapter 5. This communicates with the external robot and parsers via
CORBA. AutoCode also provides new post-process classes to interact with the doclet APIs
and to implement multiple graph support. Figure 8.2 shows how this integrates with the ex-
isting trail engine components (figure 5.1) and how the elements with which the user interacts

Crawler
/ Robot

remain largely unchanged.

Web Site(s)

/ ‘\HTML Pagel
/V~

Source Code

JavaDoc Tool

’
~N
§
g

Lip, ey

&
£
=
i
oy Index
. - Builder
$ \ N
“_ Inheritsnce Interface Aggregation Return Type Parameter
User ‘-_ =
%
2
2
3
\ ¢

\ g .
2, ! %
7( .
)
%,

Inverted File

SYur'y-
"0‘@
[ ————tiar

Figure 8.2: Architecture of AutoCode. Closed boxes represent external data sources, open-
ended boxes represent internal data stores, shaded circles represent processes specific to Au-
toCode and unshaded circles represent common processes. Solid arrows represent data flow
and dotted arrows represent flows of important information (URLs and Queries). Simple
keyed “get” instructions (for example in HT'TP requests) are omitted for clarity.

AutoCode creates five graphs. One graph is created for each of the coupling types described in
section 8.2 — Inheritance, Interface, Aggregation, Parameter and Return Type. An illustration
of how these graphs can be derived from source code can be seen in figure 8.3.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION

interface StringReader {
String readString();
}

abstract class CharSequence {
int getLength();
append(String  addme );

}

class StringFileReader
implements StringReader {
String lastString;
StringFileReader(String filename) { }
String readString() { }
}

class String extends CharSequence({
append(String  addme );
}

StringReader

StringFileReader

Interface

CharSequence

Inheritance

StringFileReader

Aggregation

Return Type
CharSequence StringFileReader

Parameter Type

Figure 8.3: Illustration of coupling types and their graph representations.

247



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 248

In order to make use of these graphs, AutoCode requires a TrailAlgorithm implementation
with multiple graph support. MultiGraphBestTrail extends the BestTrail implementation
(see figure 5.3). It replaces the addStartingPoint method to expand navigation trees from
each starting point on each of the five graphs. AutoCode also subclasses ActiveWebcase
to provide multiple graph support. A WebcaseStub extends ActiveWebcase, delegating re-
sponsibility to a second ActiveWebcase and overriding methods for obtaining graphs and
TrailNodes, returning different graphs to each Best Trail instance.

AutoCode uses an enhanced version of NavSearch with support for coloured trails. The Java
source code is shown in the main window with the trails highlighted using the colour scheme
shown in figure 8.1.

Colour | Link Type

Green | Parameter
Cyan Return-type
Gold Interface
Purple | Aggregation
Orange | Inheritance

Table 8.1: Colour scheme for trail highlighting.

8.4.2 Source Code Display

Trail-finding on the graphs of coupling relationships provides automated navigation and shows
the context of classes. However, this is considerably less effective if the display of the source
code is poor, and if there is no support for manual navigation.

Many tools exist for converting Java source code to HTML. The SourceToHTMLConverter
classes which come with Javadoc provide neither syntax highlighting nor linking. Steven R.
Brandt’s Java2HTML 2 VasJava2HTML ® and JMarkup * all provide syntax highlighting but
don’t provide links between classes. The Gnu is Not UNIX (GNU) project’s Source-highlight
works with multiple languages (C++, Prolog, Perl, etc.) but suffers the same flaw.

XRef-Java2HTML does provide links but to the Javadoc documentation, not to the source
files. It also provides no public API. Jason Shattu’s Java2HTML ® does provide a public
API and makes links to both Javadocs and between classes in source code. It also provides
effective syntax highlighting. This application was chosen and used to provide the main page
display for AutoCode. Calls to the API are made as part of the doclet process.

8.4.3 Examples

Figure 8.4 shows the results for the query “zip” on the autocode index of the JDK 1.4 source
code. Figure 8.5 shows the trails more clearly. It can be easily seen that one or more methods

2 http://www.javaregex.com /cgi-bin /pat/java2html.asp

3 http://www.chez.com/vasile/java2/VasJava2HTML.html
* http://szeiger.de/java/IMarkup.java.html

% http://java2html.com/



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION

@ \avigationZone,.

Trail>java.util. zip ZipFile > java.til. 2ip ZipEntry

NavSearch | TralSearth | VisualSearth

zip Search

{{Lnava.ut . zip ZipFil

java,util, zip ZipEntry
 java.util jar JarFie

i java.uti, zip ZpOutputStream
-0 java.uti, zip ZipEntry

L8 java,utl jar JarOutputStream

8 java.util zip . ZiflnputStream
B java.utl, zip .2ipEntry
SR java.uti jar JarlnputStream
-8 java.util. jar.JarFile
=@ java.uti, zip ZipEntry

8 java.util jar JarnputStream
Ui java.uti. zip ZipEntry

" java util jar.JarOutputStream

. I_Iﬂd

* @(#)ZipFile.java 1.56 02/05/29
*

* Copyright 2002 Sun Micresystems, Inc. All rights reserved.
* SUN PROBRIETARY/CONFIDENTIAL. Use iz subject to license terms.
=7

package java.util.zip;

import java.ic.InputStream:

import java.ic.IOException:

import java.io.EOFException;

import jawa.ic.File;

import jawa.util.Vector;

import Java.util.Enumeration;

import java.util.NeSuchElementException;

8 java.uti. zip ZipEntry import java.security.AccesscController;
NenvigationZone @ 2000-2002 S

* Thiz class 1s used to read entries from a zip file.
*

1.56, 05/29/02
David Connelly

* @version
* Bauthor
*

public
class ZipFile implements ZipConstants {

private long jzfile:; // address of jzfile data
private String name: // zip file name
private int total: 4/ total number of entries

private static final int STORED = ZipEntry.STORED:
private static final int DEFLATED = ZipEnhtry.DEFLATED;

S
* Mode flag to open a zip file for resading.
=)

public static final int OPEN_READ = 0Oxl;

J
#* Mode flag to open a zip file and mark it for deletion. The file will be
* deleted some time betwsen the moment that it is opensd and the moment

* that it is closed, but its contents will remain accessible via the

s

Figure 8.4: Results for the query “zip” on the JDK 1.4 source code.

249



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION

Figure 8.5:

AUTACODE Found 15 pages in 17 frails:

Search ook 0.59 zecondsz,

s ]

-4 java.util. zip .ZipFile
=4 java.util, zip . ZipEntry

=i java.utll.jar. JarFile

=i java.utl, zip ZipOutputStream:
=i Java.util, zip . ZipEntry

- java.util, jarJardutputStream

java.util. zip ZplnputStream
i java.util, zip .ZipEntry

d java.utlljar JarlnputStream

=i java.utl jar JarFile
8 java.util, zip .ZipErtry

-? java.util jar JarinputStream
-H java.utll, zip ZipEntry

-fli_ java.utiljar JanoutputStream
i java.util, zip . ZipEntry

Trails returned for the query “zip” on the JDK 1.4 source code.

250



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 251

in the ZipFile class must return ZipEntry as a parameter. ZipOutputStreams also have
methods which take ZipEntrys as parameters and ZipInputStreams have methods which
return them. JarFile extends ZipFile. Jar files are Zip files Typically containing java classes
and a special manifest.mf entry, hence it is not suprising that JarFiles, JarInputStreams
and JarOutputStreams behave similarly to their zip counterparts.

2210 171 hails.

ok 0,91 zecond

i;';wa.iu. Writer

java.io OutputStreamtiiter

= javax.xml. transfonm. stream, StreamPesult
“d java.in. Writer

-8 org.apache. xalan. senalize. Seralizer oML
“i java.o. Writer
-8 org.apache.crimson. tree. XmiDocument
- java.io, Writer
=& arg.apache.crimson. tree. xmiteContext
=& java.io, Writer
8 javax.amageio. Image Transcoder
[ 13vay. mageio. Imagesinter
“i Javax.imageio. ImageWriteParam
= javax.imageio.Image\vnter
“H javax.mageio. ImageyynteParam
=8 javax.imageio. Imageld
8 javax.imageio Imageiriter
=8 javax.imageio, ImageWWnteParam

Figure 8.6: Trails returned for the query “writer” on the JDK 1.4 source code.

Figure 8.6 shows the trails returned for the query “writer” on the JDK 1.4 source code. The
first trail shows that OutputStreamWriter is a subclass of Writer. The second shows that
StreamResult has a method which requires a Writer as a parameter. The third shows that
there is a member variable of type Writer in the SerializerToXML class. The fourth and fifth
trails show that XmlDocument has a method which requires a reference to a Writer object as
a parameter and a method which can return one via the XmlWriteContext class.

The remaining trails are concerned with the imageio classes. They show that the ImageTranscoder
interface is implemented by the abstract ImageWriter class, and that classes such as ImageWriter

must provide at least one method taking an ImageWriteParam as a parameter. Actually, two
methods require ImageWriteParamreferences — convertImageMetadataand convertStreamMetadata.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 252
8.5 Power Law Distributions in Class Relationships

Power law distributions have been found in many natural and social phenomena and in the
structure of the Web (Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins,
and Wiener 2000; Pandurangan, Raghavan, and Upfal 2002; Adamic 2002). Ounly recently
has attention turned to the power law distributions found in program code and in particular
in Java software.

A study has been performed on the AutoCode graphs — the primary motivation for which was
to confirm the hypothesis that the graphs are scale-free and, in this sense, Web-like. Given
the similarities in graph structure, it seems reasonable that similar techniques can be applied
to both corpora. To verify the relationships, data was collected from the JDK libraries, Ant
and Tomcat. Power laws were identified using the techniques described in section 2.3. The
identification of twelve separate power law distributions shows that even when the network
is decomposed by coupling type, the power laws still remain prevalent.

The primary motivation of this research is to show the connection between the structures
found in the topology of the Web and the structures found in program code. By examining
power law distributions, the study shows that the coupling networks are scale-free and, in
this sense, Web-like.

The relationships discovered can help explain the structure of source code at a low level of
abstraction. Identifying such patterns allows the consequences of developing larger and more
complex software to be more easily predicted. For example, the data could be used to predict
how many classes might contain greater than a hundred methods in a set of classes ten times
larger than that of the JDK. Alternatively, it could be used to predict the maximum number of
constructors of any class in that system. This may have implications for software maintenance
and comprehensibility in terms of time spent and effort expended (Najjar, Counsell, Loizou,
and Mannock 2003).

A further motivation is to enable models of code development that will allow developers
to create synthetic code bases containing large numbers of computer-generated classes. For
example, given an appropriate means of generating synthetic data, a developer could generate
a data set of a much larger number of classes. This would enable them to test the consequences
of developing a large system before development begins.

Finally, the work has implications for the graph traversal algorithms used in reachability
analysis and garbage collection. Just as internet networks are robust against random removal
of nodes (Albert, Jeong, and Barabdsi 2000), it is likely that random removal of classes will
have little effect on the proportion of code which can be reached and thus executed.

8.5.1 Related Studies

O’Donoghue et al. have performed a run-time analysis of Java bytecode sequences obtained
using a customized version of the Kaffe JVM (O’Donoghue, Leddy, Power, and Waldron
2002). Their experiments showed that the frequencies with which bigrams are interpreted by
the virtual machine follows a power law.

Potanin et al. have conducted experiments using a query-based analysis tool called Fox,



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 253

which is an enhanced version of Bill Foote’s Heap Analysis Tool (HAT). Their research has
confirmed power laws in the indegree and outdegrees of the run-time object graphs of several
programs (Potanin 2002; Potanin, Noble, Frean, and Biddle 2003).

Valverde et al. have shown that the indegree and outdegrees of nodes in a network of class
diagrams also follow power laws, leading to a scale-free network topology similar to that of
the Web (Valverde, Ferrer-Cancho, and Sole 2002). Since these diagrams have a one-to-one
mapping with the source code structure, they imply that these laws are a feature of object-
oriented program code.

8.5.2 Results
Methods, Fields and Constructors

The majority of this study concerns coupling relationships between classes. However, three
power laws were identified without type information. These relate to the fundamental building
blocks of classes — the number of fields in each class, the number of methods in each class and
the number of class constructors. Figure 8.7 shows log-log plots highlighting each of these
relationships.

For the distribution of the number of methods, the exponents are 1.202, 1.013 and 0.766 for
JDK, Ant and Tomcat, respectively. This implies that in the JDK there is a higher proportion
of classes with very few methods when compared with the other two systems. This might
imply fewer key classes in this system. For the distribution of the number of fields, the
exponents are 0.912, 1.124 and 0.931 for JDK, Ant and Tomcat, respectively. The difference
in the magnitude of the exponents would indicate no strong relationship between the the
number of methods and the number of fields. It could be imagined that a large number
of fields implies a larger number of methods to operate on those fields. The observations
from this study lead to the hypothesis that it is infeasible to predict the number of methods
from the number of fields and vice-versa. This hypothesis is supported by lack of correlation
between the numbers of methods, fields and constructors (figure 8.8). The correlation matrix
in figure 8.9 shows that no strong correlation exists between any of these measures.

For the distribution of the number of constructors, the exponents are 3.058, 3.363 and 2.949
for JDK, Ant and Tomcat, respectively. This implies that classes with a large number of
constructors are rarely found in systems of this scale. For example, the JDK system con-
tains only three classes with more than ten constructors. Previous work into refactoring of
constructors found similar evidence for five medium-sized Java systems (Najjar, Counsell,
Loizou, and Mannock 2003). Only one class was found to have ten constructors. This class
was part of the Swing library.

Coupling Power Laws

The frequency with which classes are used as superclasses to other classes can be calculated
by examining the distribution of outlinks in the superclass-subclass graph. Figure 8.10 shows
a bucketed log-log plot of the number of descendants of the classes in the JDK. The results
show that the distribution follows a power law with exponent 0.906. The exponents for



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 254

. y=-09117x + 56178
. R®=08613

Log(Frequency)
Log(Frequency)

y=-1.2015x + 7.64
R?=0.8564

3
Log(Number of Fields) Log(Number of Methods)

(a) Fields (b) Methods

9

(c) Constructors

Figure 8.7: Log-log plots showing power law distributions in the number of (a) fields, (b)
methods and (c) constructors of classes in the JDK class libraries.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 255

Log(Constructor
i

0 05 1 15 2 25 3 0 05 1 15 2 25 3

(a) Fields vs. Constructors (b) Methods vs. Constructors

(c) Methods vs. Fields

Figure 8.8: Log-log plots showing the relationships between (a) the number of fields and the
number of constructors, (b) the number of methods and the number of constructors and (c)
the number of methods and the number of fields for classes in the JDK.

Methods Fields Constructors
Methods 1
Fields 0.0506 1
Constructors 0.157 0.010 1

Figure 8.9: Correlation matrix for class members in the JDK



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 256

Apache Ant and Jakarta Tomcat are 0.810 and 1.310, respectively. The high value for Tomcat
implies that more classes in that system have relatively few descendants, whilst a small
number of classes are extended by many descendants. In other words, the functionality of
the system is distributed more evenly than in the other two systems. In contrast, for the Ant
system, much of the functionality is contained in subclasses of key classes such as Task and
BaseParamFilterReader. Hence the functionality is more concentrated in fewer classes in
this system.

Log(Frequency)
/
o
(Fre

N Q
y=-38633x+ 78616
1 2 3 4 5 6 7 A= 05601

4
y=-09064x + 46803 \
= 07860 1
2 R \.\

3 0 05 1 15 2 25
LogiNumber of Subclasses) Log{Number o implemented ntefaces)

(a) Subclasses (b) Interfaces

Figure 8.10: Log-Log plots showing power law distributions in (a) the number of subclasses
of each class and (b) the number of interfaces implemented by classes, both based on data
from the JDK class library.

The same techniques can be used to show that the distribution of the number of classes
implementing an interface follows a power law — with exponents 1.130, 1.118 and 1.636 for
JDK, Ant and Tomcat, respectively. This makes sense if the use of interfaces as a surrogate
for multiple inheritance is considered; a similar distribution for interface implementations as
for subclasses was to be expected under this assumption.

The distribution in the number of interfaces implemented by a class also follows a power law,
with a much higher exponent of 3.663, as can be seen from figure 8.10. This exponent was
calculated for the JDK. Insufficient data was available to calculate the exponents for the other
two systems. This result can be explained by virtue of very few classes implementing a large
number of interfaces. Those that do implement a large number of interfaces tend to delegate
the responsibility for the methods of these interfaces to members of the same interface.

Two further power law distributions can be seen in the relationship between classes as member
variables. The first is a power law distribution in the number of other classes referenced
as member variables within a given class. For example, in figure 8.3, StringFileReader
references one class, String, via the field lastString. The exponents of the distributions
are 0.876, 1.267 and 1.152 for JDK, Ant and Tomcat, respectively. The low value for JDK
reflects a comparatively uniform distribution of coupling via aggregation in this system. One
explanation for the low JDK value may be that the roles of various packages in the system



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 257

. 5 .
4 \
' .
g . H y=-1.09138+ 52929 N
H H =082
T3 H
g §
4 R H
g 3
3

y=-08756x + 46531
R =08708 0

Log(Number o contaiing classes) LogfFeds classes)

(a) Field members (b) Containing classes

Figure 8.11: Log-Log plots showing power law distributions in (a) the number of classes
referenced as field variables and (b) in the number of classes which contain references to
classes as field variables.

do not overlap and hence there are multiple focal points for aggregation, as opposed to a
centralized structure.

The second distribution is in the number of classes which reference a given class as a member
variable. For example, in figure 8.3, String is referenced by one class, StringFileReader.
The exponents of these distributions are 1.091, 1.371 and 1.934 for JDK, Ant and Tomcat, re-
spectively. Interestingly the JDK again has the lowest exponent value supporting the previous
hypothesis about multiple focal points for aggregation.

Both of these power-laws can be seen from the plots in figure 8.11. It is noticable that the
values for the first distribution are lower than the corresponding values for the second. This
can be explained by the tendency in object-oriented code for many classes to be grouped
together as members of another class. In contrast, it is comparatively rare for a class to be
referenced as a member in many classes.

Four more class features were analyzed for power law distributions, namely the indegrees
and outdegrees induced by parameter types and return types for each of the three systems.
All showed scale-free topology. The Ant system has comparatively high values for all the
exponents in these relationships. Inspection of the classes in this system and subsequent
analysis revealed no strong correlation between usage of return types and parameters. This
could be considered a suprising result, since it might be expected that parameters and return
types were linked. No obvious explanation could be found for the differences in exponents
between the systems.

The exponent values for all three systems can be found in figures 8.12, 8.13 and 8.14. The 72
values denote Pearson product-moment correlation. The high 72 values for JDK reflect the
larger number of classes in this system. As a result, more consistency in the data may be
expected. The r? values are relatively low but still support the theory.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 258

Relationship Exponent | Lower 95% | Upper 95% r?
Number of Methods 1.202 0.972 1.431 | 0.856
Number of Fields 0.912 0.746 1.078 | 0.861
Number of Constructors 3.058 2.570 3.545 | 0.960
Subclasses 0.906 0.623 1.189 | 0.787
Implemented Interfaces 3.663 2.918 4.409 | 0.960
Interface Implementations 1.130 0.933 1.329 | 0.907
References to class as a member 0.876 0.682 1.069 | 0.871
Members of class type 1.091 0.875 1.307 | 0.862
References to class as a parameter 0.858 0.787 0.929 | 0.973
Parameter-type class references 1.183 1.050 1.316 | 0.948
References to class as return type 0.957 0.882 1.032 | 0.978
Methods returning classes 1.522 1.324 1.720 | 0.939

Figure 8.12: 95% confidence intervals for power law exponents in JDK.

Relationship Exponent | Lower 95% | Upper 95% 2
Number of Methods 0.766 0.564 0.968 | 0.768
Number of Fields 0.931 0.702 1.160 | 0.834
Number of Constructors 2.949 2.394 3.503 | 0.990
Subclasses 1.310 0.714 1.906 | 0.828
Interface Implementations 1.636 0.865 2.407 | 0.856
References to class as a member 1.152 1.629 0.675 | 0.853
Members of class type 1.934 1.432 2.037 | 0.970
References to class as a parameter 0.711 0.375 1.046 | 0.595
Parameter-type class references 1.191 0.842 1.540 | 0.793
References to class as return type 1.043 0.666 1.420 | 0.751
Methods returning classes 1.362 0.883 1.840 | 0.801

Figure 8.13: 95% confidence intervals for power law exponents in Tomcat.

Relationship Exponent | Lower 95% | Upper 95% r?
Number of Methods 1.013 0.799 1.228 | 0.854
Number of Fields 1.124 0.919 1.378 | 0.901
Number of Constructors 3.363 2.771 3.953 | 0.984
Subclasses 0.810 0.452 1.169 | 0.667
Interface Implementations 1.118 0.585 1.652 | 0.814
References to class as a member 1.267 0.410 2.124 | 0.881
Members of class type 1.371 0.446 2.296 | 0.881
References to class as a parameter 0.960 0.555 1.365 | 0.669
Parameter-type class references 1.480 1.110 1.850 | 0.864
References to class as return type 1.342 0.715 1.969 | 0.753
Methods returning classes 1.820 1.348 2.293 | 0.922

Figure 8.14: 95% confidence intervals for power law exponents in Ant.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 259
8.6 Potential Gain as a Refactoring Metric

Decisions on which classes to refactor are fraught with difficulty. The problem of identifying
candidate classes becomes acute when confronted with large systems comprising hundreds
or thousands of classes. This section summarises work presented in Wheeldon and Counsell
2003a showing how the Potential Gain metric can be used to identify key classes and hence
candidates for refactoring. The conjecture was made that certain classes in every OO system
are of such importance (in terms of the features they possess) that they should be a priority
for refactoring effort and that these could be identified by using the Potential Gain metric.

The motivation for the research stemmed from a number of sources: Firstly, developers will
inevitably want to quickly identify key classes either to avoid refactoring and re-testing effort
to such classes or because those classes are the ones which exert considerable influence over
the system as a whole. Secondly, to investigate any differences between library-based systems
and other systems in terms of coupling. Thirdly, to prove the utility of the AutoCode graph
data (section 8.4) of the potential gain metric (chapter 4) in fields beyond Web metrics.

The Potential Gain is defined for classes in terms of the coupling paths between them and
gives an indication of the inter-connectivity of a class with other classes. For example, a high
Potential Gain value for a class at a point in the inheritance hierarchy means that the class
has a relatively large number of descendants. A very low value indicates that it is a leaf
node - in other words, it has no subclasses. In terms of aggregation classes either use other
classes or are used by other classes (or both). Hereafter, these will be referred to as normal
aggregation and reverse aggregation, respectively.

The original justification for the use of the reciprocal and geometric decay functions (sec-
tion 4.2) was based on the assumption that the utility of browsing a page diminishes with
the distance of the page from the starting URL. The justification for these measures in the
context of coupling is based on the fact that the influence that two classes have on each other
diminishes as the distance (in terms of coupling) increases. This is a features of many patterns
- such as Mediator and Facade (Gamma, Helm, Johnson, and Vlissides 1995) which reduce
communication and dependencies by introducing “middle-men”.

In addition to the Potential Gain, the AutoCode doclet also reported the number of methods
in each class, the number of class attributes, and the depth or level of each class in the in-
heritance hierarchy (Chidamber and Kemerer 1991). Table 8.15 shows, for the JDK system,
these statistics for each of the top fifteen classes when ranked in descending order by their
reverse aggregation Potential Gain values. The presence of Hashtable and Vector as com-
monly used objects suggests that the Collections framework introduced in JDK 1.2 has not
been fully adopted within the JDK. The top fifteen classes were then ranked in descending
order according to their normal aggregation Potential Gain value. These fifteen classes were
then compared with the reverse aggregation classes in figure 8.15. Several of the classes in fig-
ure 8.15 are highly self-referencing. Considering which classes score highly on both metrics,
helps eliminate such classes. Eliminating such classes leaves String, Object, Hashtable,
Vector and Class clearly identifiable as extensively used, key classes. Figure 8.16 shows
the top fifteen classes when ranked on descending inheritance Potential Gain values. It is
interesting to note that only one class from figure 8.15 appears in the top fifteen JDK classes
from figure 8.16. This class was java.lang.0Object, as might be expected; a high inheritance



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 260

Potential Gain value implies that a class has many subclasses.

Classname Methods | Attributes | Constructors | Depth
PageAttributes.MediaType 0 223 1 2
String 58 7 12 1
Character.UnicodeBlock 1 87 1 2
HTML. Attribute 1 83 1 1
HTML.Tag 4 82 3 1
MediaSizeName 2 75 1 3
Color 29 35 7 1
Object 12 0 1 0
CSS. Attribute 3 62 1 1
AccessibleRole 0 56 1 2
Hashtable 24 14 4 2
Vector 43 4 4 3
Class 69 17 1 1
TypeCode 19 0 1 1
ObjectStreamField 12 6 4 1

Figure 8.15: The fifteen classes with the highest reverse aggregation Potential Gain values:
JDK

Classname Methods | Attributes | Constructors | Depth
Object 12 0 1 0
Throwable 17 5 4 1
Exception 0 1 4 2
Component 254 80 1 1
ComponentUT 11 0 1 1
Container 106 18 1 2
AbstractAction 12 3 3 1
AccessibleContext 24 24 1 1
JComponent 178 69 1 3
Expression 17 1 1 1
RuntimeException 0 1 4 3
Component.Accessible AW T Component 39 2 1 2
Buffer 21 5 1 1
EventObject 2 1 1 1
ORB 60 5 1 1

Figure 8.16: The fifteen classes with the highest inheritance Potential Gain values: JDK

Further analysis was made on the JDK, Tomcat and Ant systems, with particular attention
given to “bad smells” such as Large Class and Primitive Obsession (Fowler, Beck, Brant,
Opdyke, and Roberts 1999), and to core refactorings such as Eztract Method, Move Field and
Move Method upon which many other refactorings are based.

In addition to providing additional justification for the use of the potential gain metric and
the AutoCode coupling graphs, four principal results emerged from the research. Firstly, that
metrics from research domains other than software engineering can be used to aid developers
and researchers in the refactoring process. Secondly, that there are substantial differences
between each of the three systems investigated. Thirdly, that only the Ant system exhib-
ited the expected properties of key classes in terms of inheritance and aggregation. Finally,
the analysis supported the hypothesis that interfaces are commonly used as a surrogate for



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 261

multiple implementation inheritance.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 262

8.7 Concluding Remarks and Future Work

This chapter has described the application of the trail-finding technology introduced in part
II to the problem of program comprehension. Two systems have been presented for search
and navigation in Javadocs and Java source code. The development of the Autocode system
has shown the effectiveness of the trail-finding approach when many of the problems which
are found in Web search are removed - links have types, short titles are easily generated,
pages have a consistent and logical layout and are well connected. However, several issues
still remain.

Documentation and source code display systems similar to those used for Java exist for other
languages, with Object Oriented languages such as C++ and C# gaining particular benefit
from the mapping between classes and Web pages. It is intended that both AutoDoc and
AutoCode be extended to support these languages.

Interesting questions may be asked of documentation and source code corpora: Should links
based on the usage of objects in code be treated in the same way as those based upon human
judgements? Are these created with the same distributions of preferential linking as found in
web sites? How does this affect the performance of metrics which assume that links denote
quality or authority, such as Kleinberg’s Hubs & Authorities (HITS) or Brin and Page’s
PageRank?

8.7.1 OO Coupling

As a first step to answering the second of these questions, the graph structure induced by
the OO coupling has been studied. Twelve new power-laws have been identified. The ex-
ponents of these power laws are given for the JDK (figure 8.12), Tomcat (figure 8.13) and
Ant(figure 8.14). One conclusion from this work is the belief that these regularities are com-
mon across all non-trivial object-oriented programs.

Another conclusion is that the different types of coupling examined are independent. This
finding contradicts the hypothesis that high usage in one form of coupling can be used to
predict high usage in another form. The implications of these findings are that the data
can be used to predict the dimensions of future systems. This will allow us to estimate the
complexity of developing and maintaining those systems.

It is interesting to note that the exponents for Ant and Tomcat rarely fall within the 95%
confidence intervals of the JDK. It is believed that these exponents are due to deeper prop-
erties of the collections. The conclusion is that whilst there are common properties between
these systems, each individual system has its own unique characteristics.

Bieman and Murdock have already shown that there is a large body of freely accessible source
code available on the Web (Bieman and Murdock 2001). In terms of future work, it would be
interesting to construct a Java code repository for all the available code on the Web, taking
advantage of the graph structure both to show trails and generate Jar files for programmer’s
use. It would also be interesting to verify results of the power-law study using such a crawl.
Assuming that these results hold, a number of techniques can be bought to bear to explain
the phenomena.



CHAPTER 8. TRAILS AND PROGRAM COMPREHENSION 263

In order to explain the power law in World Wide Web graphs, new models for its growth
and evolution have emerged. The key to these models is a process known as preferential
attachment (Albert, Barabési, and Jeong 2000) in which pages which have a high indegree
are more likely to be referred to by new links. This can be explained by considering a page
with higher indegree as being more popular more important and better connected. It is thus
more likely to be visited by a user who may then also choose to link to that page. Research is
ongoing to find methods to improve the model — for example, by combining preferential and
non-preferential attachment (Levene, Fenner, Loizou, and Wheeldon 2002). Other future work
will investigate the accuracy with which these models can predict the structure of program
code.

Future work on refactoring will focus on two areas. Firstly, expanding the scope of what a key
class is. The Potential Gain metric will be used to extract details relating to method param-
eters, method return types and interfaces. A second area of future research will investigate
the potential for the key classes identified to be refactored. The research thus represents a
first step in establishing the features of classes most eligible for refactoring.

Finally, it is hoped that the AutoCode and AutoDoc systems can be extended to allow
personalized results so that programmers working on a particular field have query results
tailored to their needs.



Chapter 9

Future Work and Concluding
Remarks

The trail is the thing, not the end of the trail.
Travel too fast and you miss all you are traveling for.

L’Amour 1984

To travel hopefully is a better thing than to arrive.

Stevenson 1894

The most important characteristic of a very complex system is the user’s inability
to learn its structure as a whole.

Reiser 2001

264



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 265
9.1 Summary of the Thesis

The main body of this thesis has been presented in two parts, covering two major contributions
— the implementation of a navigation system for discovering Memex-like trails in directed
graphs and the application of this technology to the fields of web navigation, database search
and program comprehension.

An existing algorithm, the Best Trail has been refined and new algorithms have been presented
for removing redundant information from trails; for computing the potential gain metric used
to select starting points that allow for greater navigation opportunities; for generating web-
cases — collections of files for enabling trail-based search; for generating short but meaningful
extracts from web pages; for merging multiple webcases to enable scalable deployment and for
generating graphs from hierarchically categorized document collections. These contributions
are summarized in figure 9.1.

Section | Contribution

3.7 A new implementation of the Best Trail Algorithm, with improvements to the
node selection functions.

3.6 A new algorithm for filtering redundant information from trails.

3.8 Computational complexity of the Best Trail Algorithm.

4.3 A new algorithm for computing the Potential Gain metric for determining
starting points for future navigation.

4.6 Proof that the Potential Gain can aid in selecting starting points for automated
navigation.

5.7 A new algorithm for computing Web page summaries.

6.3 The first application to provide completely pre-emptive computation of
memex-like trails across web sites.

7.2 The first application of memex-like trails to unstructured and semi-structured
search of relational data.

7.8 A new algorithm to compute graphs from hierarchically classified document
collections.

8.4 The first application of memex-like trails in aiding program comprehension.

8.5 Identification of power-laws in Java source code.

Figure 9.1: Contributions of the thesis.

However, the work in this field is far from complete. The following sections will outline
further opportunities for research and development to improve the trail finding mechanisms
and apply them to new areas.

Section 9.2 discusses how the system could provide personalized trails for individual users.

Section 9.3 discusses how the system could be extended to provide trail-construction facil-
ities as a meta-search engine interfacing with traditional search engines.

Section 9.4 describes the software navigation problem and outlines ideas for relieving the
problem using trail finding concepts.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 266
Section 9.5 gives suggestions for using the trail finding system to generate navigable paths
through virtual environments.

Section 9.6 describes general properties of graphs and scoring functions. Applications in
which such properties are observed are likely candidates for automated trails discovery.

Section 9.7 gives some final thoughts on the value of the thesis and the opportunities avail-
able for future research.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 267
9.2 Personalization

Personalization schemes have been used extensively on the Web. They have been used to
recommend goods and services on e-commerce sites, to suggest interesting stories for online
newspapers and to suggest pertinent articles and discussion forums (Pretschner and Gauch
1999). Personalized search systems have been developed which filter results according to user
profiles and personalized link-suggestion systems such as Personal WebWatcher have been
developed to suggest the most interesting links for a user from a given page (Mladenic 1999).
Just as the Webwatcher forms a trail over time, so does Personal WebWatcher. However, the
problem remains that the link-at-a-time approach does not allow the user to see the context
initially. Just as the navigation engine described in this thesis computes complete sequences
in advance, so must a personalized trail engine.

Personalization systems may be developed using many techniques. Profiles may be stored as
networks, keyword lists and decision trees. They may be built in advance from prior knowledge
or evolve slowly over time. They may require explicit programming such as user selections or
the results of a questionnaire or rely on implicit knowledge derived from bookmarks or past
browsing or query history.

The navigation engine may incorporate personalization in several ways:

1. Redefine the node score, p(n), to return the score of a node, n, with respect to a query
and a user, as suggested in chapter 3.

2. Redefine the trail scoring functions, p(t), to return the score of a trail as a function of
the page scores and the user’s profile.

3. Compute a larger number of trails and filter the resulting set based upon user profiles.

There are many challenges to be faced in the development of such a system, but the rewards
will hopefully be a better search and navigation experience for all users.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 268

9.3 Meta-Search

Scaling to the Web is difficult. An alternative strategy is to provide meta-search facilities
across existing search engines. A search engine takes an input query and returns a set of
ranked pages. In order to provide meta-search abilities, a graph must be constructed based
upon the search engines output. The Best Trail algorithm can then be applied to this graph as
before. Such a system could be implemented as an ActiveWebcase extension — taking input
from many sources and building graphs for each query. Several issues immediately present
themselves:

Speed Jakob Nielsen has stated that “Every Web usability study ...has shown the same
thing: users beg us to speed up page downloads”. In order to achieve quick response
times, the meta-search system must not request multiple pages in sequence. To do so
would result in the users perceived response time being greater than the sum of all
operation times. Operations must be parallelizable.

Legality Google’s search services are made available for “personal, non-commercial use”
The terms of service explicitly state that “permission to meta-search Google for a
research project ...will not be granted” (Google 2002b). Similarly, to meta-search
AllTheWeb.com developers must “enter into a commercial agreement with FAST or
sign up for a relevant Developers Program”. The situation has changed slightly with
the introduction of Google’s SOAP API, but this remains an issue.

Obtaining data Conventional meta-search engines have worked by using screen scrapers
which parse the HTML results from each engine. Writing such scrapers is very time-
consuming although there has been some research in automating the process (Ashish and
Knoblock 1997; Chidlovskii, Borghoff, and Chevalier 1997; Kushmerick 1997). Recently,
efforts have been made to standardize the communication between such services using
XML and SOAP. Google now provide such a service, which can be queried using almost
any programming language on all common architectures, but with highly restricted
access. In particular, there is a limit of 1000 queries a day, which provides sufficient
capacity for a meta-search system to be developed, but not made public. More seriously,
at the time of writing, only ten pages can be returned in the result set for a single query.
This is totally inadequate for forming a graph.

Summaries To store all a search engine’s pages in advance would imply an ability to build
a search engine equal in scale to Google. Downloading each page would cause a massive
increase in bandwidth usage and user’s query response time. Therefore, any meta-search
system must rely on summary data from the search engines to provide data for any re-
ranking or for displaying to the user. The unsolved problem is that these summaries
are not consistent (see chapter 5, section 5.7). This is a general meta-search issue, not
restricted to a trail-based system.

The Graph A graph must be constructed on which the Best Trail algorithm can be run.
However, the basic results of a search engine provide no information about the inlink or
outlink structure of any of the pages. However it may be possible to construct a graph
by adding soft-links based upon certain heuristics:



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 269

DMOZ categories Chapter 7, section 7.8 detailed how links could be constructed
in such classification hierarchies. Unfortunately Google is the only major search
engine to provide this information, and it does so only in limited circumstances.
Restricting searches to the DM OZ pages is pointless — the current navigation engine
architecture can already scale to indexing all pages referenced by DMOZ.

Domains Pages from the same domain could be linked together under some con-
straints, but this would have limited impact on results spread across many do-
mains. What could be done is to use the first set of results to establish the im-
portant domains, then use subsequent queries for the best results on each domain.
The problem with this approach is speed.

Similarity IR metrics could be used to detect similar pages which could be connected
by soft links. Sufficient keyword information is probably not present though as the
system would be forced to rely on summaries.

If these problems can be overcome, then the best trail algorithm can be used as before. To
implement a meta-search system the following would then need to be accomplished:

Parsers must be written for extracting information from the raw data. Either HTML parsers
for screen scrapers, or XML and SOAP based parsers could be used. Probably a com-
bination of the two approaches will be required.

ActiveWebcase must be extended so that the data for the TrailAlgorithm comes from the
parsed data.

JSPs must be written to glue the components together and provide a usable interface.

It would also be possible to evaluate the graph-building techniques by comparing the results
of a crawled graph with those of the heuristic approach. The challenges involved in trail-based
meta-search are endless.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 270

9.4 The Software Navigation Problem

This work has primarily concentrated on the navigation problem as experienced in hypertext
environments. A similar problem affects traditional software. Alan Cooper describes the
phenomenon as “uninformed consent”. In his example, Sony Trans Com’s P@ssport, the user
was “required to make a choice, the scope and consequences of which are not known” (Cooper
1999). This is a form of the Navigation Problem commonly found in all types of software.

Consider for example, a typical PC with Microsoft Windows and Office installed, with which
the user wishes to write a letter. Before the user can start to accomplish his goal, he must
overcome a navigation problem. The correct course of action may be to click on Start, then
Programs, then Microsoft Office, then Microsoft Word. This represents four decisions which
the user is expected to make, despite none of the labels offering any metadata and none of
them mentioning the words “write” or “letter”. This might seem picky, but the problem gets
worse when the task of changing Word’s behaviour is considered. Sould the user click on
“File”, “Tools”, or something else? In practice, it may be necessary to examine all menus,
and try many panels and dialogue boxes before the desired option is found. For example, to
change the background/foreground colours so they are easier on the eye, the user must follow
the path Tools — Options — General — Blue background, white text. This problem is
not specific to Microsoft software — it is a feature common to all graphical (and many non-
graphical) interfaces. If the system could let the user tell the computer what he wanted to
accomplish, it might be possible to suggest paths in the same manner that the site navigation
engine did for hypertext.

It is possible that the next generation of command line interface will encompass keyword
search features. Hans Reiser’s future vision for the Linux file-system includes a syntax for
combining filename manipulation with search facilities (Reiser 2001). Reiser’s system includes
two main elements. Groupings, such as [x y x], act like search queries for isolated documents
or collections of documents. Orderings, such as x/y/z can act as conventional file system
paths, or can replace CORBA name paths and other hierarchical structures. For example the
name [my secrets]/[love letter susan] would describe a document associated with the
words “love”, “letter” and “susan” within a directory associated with the words “my” and
“secrets”. It is possible to extend this with trail and path finding at the file system level. For
example x/[y z]* might be a construct to find trails matching the disjunctive query of the
keywords y and z from with the element identified by the name space x.

It has already been demonstrated how information from relational databases and web sources
can be combined. Integrating information from the user’s operating environment and local
and network filesystems seems an obvious and challenging evolution of these ideas. Figure 9.2
shows how the NavSearch interface could be used at the operating system level.

All this work is part of ongoing research into unifying the interfaces of the web, hypertext
and desktop applications. There are endless possibilities for this area of research. For exam-
ple, providing consistent user interfaces across different media, providing applications which
communicate via abstract interface layers to provide HTML and X-Windows presentations,
or incoporating Nelson’s transclusive links at the application level so that an element of one
application (say Word) can be embedded into another (e.g. PhotoShop) with the same update
properties as were envisaged with Xanadu.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS

/ NavigationZane - Nzos - Microsoft Internet Explorer

JElIe. Edit  Wiew Favoriies Took  Help

programs
winannp
winampplayer

MavigationZong @ 2000-2002

q s

|1

_{&[x]
| ¢pack » = - @D @ 4| Deach [EFavories HHstoy |- S0 -H 2 2
| Adaress | ] heep:fineane. des bk, ax uk: 8081 neenginefnzos/navisearch =l @
| Google -] | Bpsearchwieb  @searchsie Al Fecliolucly | @pageinfo - Fjup + A HCHCHE
' ' NawSearch | Trailearch | visualSearch
@ \avigationZone e —
suffer
Trail>starthtml > programs bl = winarnp il > winarnpplayer

Folder Options ied |

General | view  File Types |Ulflme Files |

Flagistered s types

Estensions | File Types ]
BIMP2y  Movie File [MPEG)

edii e
BEIMPA  Movie File MPEG)
BIMPD  Miciosolt Project Database File (MPD)
BIMPE  Movie File MPEG)
EIMPEG  Movie File MPEG)
PP Wi Fla MPERT =l

Details for MP3"

Openswith: % Winamp

Change

Files with extension 'MP3' are of type "Winamp media fils. To
change settings that affect all ‘Winamp media file" files. click

Advanced,
Advanced

=1

Cancel | ol

Figure 9.2:

|| |8 ntemet

271

Mock-up of how the trail finding interface could be applied to the graph of
potential user interactions at the operating system level.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 272
9.5 Navigation in Virtual Environments

Virtual environments or 3D worlds are an area of software development with many inherent
navigation issues. The problems faced are very similar to those discussed in chapter 2. Chit-
taro, Ranon, and Leronutti 2003 states that “Many Web3D worlds, . . . typically leave the user
alone and partially or totally unassisted in navigating the environment”. They continue, stat-
ing that the usability program faced in leaving the user unassisted can range “from navigation
issues (e.g. wayfinding) to difficulties in figuring out which operations can be performed on
the objects in the world”.

VRML Tour Creator is a system which generates tours along a specified ordered set of points
in a Virtual Reality Modeling Language (VRML) world (Chittaro, Ranon, and Leronutti
2003). The points are specified manually, as with a traditional hypertext guided tour. VRML
Tour Creator then finds a path between these points, avoiding other objects in the world. A
virtual tour-guide then moves along this path highlighting points of interest.

The program requires the following inputs:

1. The VRML file of the world for which the tour will be developed.
2. The Humanoid-Animation (H-Anim) model of the virtual tour-guide and its dimensions.
3. The desired maximum walking speed.

4. The ordered list of k objects/places to be presented.

The last of these could be constructed as the output of the Best Trail algorithm given a
suitable network model and scoring function. For example, in the museum tour, nodes could
represent rooms where links would occur whenever the rooms were adjacent. Each room
would be annotated with meta-data describing the exhibits within it, the time period, origin,
etc. The Best Trail Algorithm could then construct a tour through various rooms of the
museum in response to the users query. As the user reached each room, a tour could be
constructed describing the major exhibits in the room. The VRML Tour guide would then
produce the animation required in response to this. Feedback would enable the tours to be
altered in response to a better understanding of the user’s interests and needs.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 273

9.6 Graph Characteristics

Several scenarios have been described in this thesis using links in Web sites, databases and
source code. In each of these scenarios, one or more graphs are constructed, the vertices of
which represent candidates for inclusion on trails. In the examples shown, these vertices have
represented Web pages, database rows and Java classes.

Although any binary relation can be used to form a graph, not all graphs are suitable can-
didates for a trail finding approach. The graphs created for the suggested applications share
several common properties. Some of these properties would be desirable for any trail-based
system. Others are specific to the design of the navigation engine used here.

1. For each application concerned, a trail or path is a reasonable answer to an information
request.

2. A scoring function is available which maps the vertices of the graph to set of real
numbers. In the examples implemented, this has always been an information retrieval
function, based upon Salton’s normalized tf.idf scores.

3. The trails are scored according to their content, not their length. Future systems would
also be required to work within this framework. For example, if a system was developed
for computing paths on a map of London, then finding the shortest path from Leicester
Square to St. Pauls would be better achieved by an algorithm such as Dijkstra’s. How-
ever, if this hypothetical system was asked to suggest a tour around London that gave
focus to Victorian architecture, then the Best Trail approach would be more reasonable.

4. The average indegree and outdegrees are sufficiently large enough that the trails can be
meaningful and so that an exhaustive search is not a viable solution.

5. The graphs are all sparse. The Best Trail algorithm scales badly on fully-connected
graphs. In the examples shown the indegrees and outdegrees are often organized ac-
cording to a power law or similar distribution.

6. The graphs are neither regular nor flat. Many graph algorithms exist for special cases
undirected graphs in which vertices are arranged in a plane. Most of these algorithms
are not content driven, but would still provide a better starting point for investigation
in these cases.

7. The graphs are often cyclic, but not always. For example, the inheritance and interface
graphs used by Autocode (Section 8.4) are acyclic. If the graphs are known to be
acyclic and contain no nodes with duplicate content, then the scoring functions should
be altered to remove the redundancy checking. This will speed up the computation of
the trails.



CHAPTER 9. FUTURE WORK AND CONCLUDING REMARKS 274

9.7 Final Remarks

The concept of trails has appeared consistently throughout this thesis. A trail-based metric
(the potential gain) and a trail-finding algorithm (the Best Trail) have both been presented.

Such trails can be found everywhere. Trails can be formed by chains of logical constraints
in an RDBMS, by paths of coupling relationships in computer programs, as paths through
virtual and real-world environments and as sequences of moves in games and simulations. The
work in this thesis has shown how common techniques can be applied to all of these areas.

In all the cases examined, the system provides significant benefits for users. Trails provide
contextual cues by showing relevant pages which link to, and are linked from, other pages
on the trail. This contextual information helps disambiguate meanings and gives the user
a better understanding of the likely content of the trail’s pages. The trails thus help the
user to solve the resource discovery problem. This problem was defined in section 2.4 as that
of finding a resource which answers a given question or which provides information about a
given subject.

The contextual information also alleviates the navigation problem, defined in section 2.8 as
the problem of preventing people from getting “lost in hyperspace”. This is achieved by
showing the user where he has been and where he is relative other pages on the trails.

The use of the Best Trail algorithm is key to helping solve the navigation problem — by
semi-automating the navigation process. The algorithm can follow links and separate rele-
vant information from peripheral documents. Because the navigation process is now semi-
automated, the user is saved from having to continually make navigation decisions without
appropriate clues to the relative worth of links. The user has a simple option of following the
path provided or using the path to make more informed navigation decisions.

The end result is an interface that (for Web sites at least) allows users to access information
more quickly, more accurately and with a higher degree of confidence.

Many more improvements and applications are possible and some of these will hopefully
appear in the years to come. This work marks only a starting point for many possible
developments, but sadly, the end for this thesis.

I regret to announce that ...this is the END.
I am going.

I am leaving NOW.

GOOD-BYE!

Bilbo Baggins in Lord of the Rings (Tolkien 1954)



Appendix A

List of Abbreviations

AAAT
ACM
ADT
AMA

APCM
API
ARC
ARPA
ASCII
BFS
CACM
CDhM
CERN

CMS
CMU
CMYK
CNN
CORBA
CSIRO

DAG
DARPA
DBLP
DBMS
DDL

American Association for Artificial Intelligence. Homepage: www.aaai.org
Association of Computing Machinery. Homepage: www.acm.org

Abstract Data Type (Howe 1993).

American Medical Association.

Adaptive Probabilistic Concept Modelling (Autonomy 2003).

Application Programming Interface.

Augmentation Research Centre (Engelbart 1962; Engelbart and English 1968).
Advanced Research Projects Agency. See DARPA. Homepage: www.darpa.mil
American Standard Code for Information Interchange. A.k.a. plain text.
Breadth First Search (Aho, Hopcroft, and Ullman 1983).

Communications of the ACM.

Comparative Development Methodologies.

Consel Européen pour la Recherche Nucleaire. Now the European Oganiza-
tion for Nuclear Research. Homepage: www.cern.ch

Content Management System or Content Management Server.

Carnegie Mellon University. Homepage: www.cmu.edu

Cyan Magenta Yellow Key (Foley, van Dam, Feiner, and Hughes 1990).

Cable News Network. Homepage: www.cnn.com

Common Object Request Broker Architecture. FAQ: www.omg.org/gettingstarted /corbafaq.htm

Commonwealth Scientific and Industrial Research Organisation. Homepage:
WWW.csiro.au

Directed Acyclic Graph (Aho, Hopcroft, and Ullman 1983).

Defense Advanced Research Projects Agency. See ARPA.

Digital Bibliography and Library Project. Homepage: dblp.uni-trier.de
DataBase Management System. See RDBMS.

Data Definition Language. Part of SQL.

275



APPENDIX A. LIST OF ABBREVIATIONS 276

DFS Depth First Search (Aho, Hopcroft, and Ullman 1983).
DML Data Manipulation Language. Part of SQL.
DMOZ Directory MOZilla. See ODP. Homepage: www.dmoz.org
DTI Department of Trade and Industry. Homepage: www.dti.gov.uk
FAQ Frequently Asked Questions.
FCE Faculty of Continuing Education.
FTP File Transfer Protocol.
GA Genetic Algorithm.
GUI Graphical User Interface.
HCP Hamiltonian Cycle Problem. See: www.ing.unlp.edu.ar/cetad/mos/Hamilton.html
HITS Hyperlink-Induced Topic Search. See Kleinberg 1998 for details.
HPA Hypertext Probabilistic Automata (Borges 2000).
HPG Hypertext Probabilistic Grammar (Borges 2000).
HPP Hamiltonian Path Problem. See HCP.
HSV Hue Separation Value (Foley, van Dam, Feiner, and Hughes 1990).
HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol (Berners-Lee 1996).
ICDT International Conference on Database Theory.
ICSM International Conference on Software Maintenance. Homepage: www.cs.vu.nl/icsm2003
IPSJ Information Processing Society of Japan. Homepage: www.ipsj.or.jp
IWPC International Workshop on Program Comprehension. Homepage: www.iwpc2003.uvic.ca
IDF Inverse Document Frequency (Baeza-Yates and Ribeiro-Neto 1999).
IDL Interface Definition Language. Tutorial: java.sun.com/docs/books/tutorial/idl
IE Internet Explorer. Homepage: www.microsoft.com/windows/ie
IIS Internet Information Services. Homepage: www.microsoft.com/iis
IMF International Monetary Fund. Homepage: www.imf.org
IT Information Technology.
JDK Java Development Kit. Homepage: java.sun.com

JPEG Joint Photographic Experts Group. Usually refers to the image format de-
veloped by the group rather than the group itself (Foley, van Dam, Feiner,
and Hughes 1990).

JSP Java Server Pages. Homepage: java.sun.com/products/jsp
JVM Java Virtual Machine.
KMS Knowledge Managment System.
LNCS Lecture Notes in Computer Science. Homepage: www.springer.de/comp/Incs
MBA Masters in Business Administration.
MIME Multipurpose Internet Mail Extensions (Freed and Borenstein 1996).



APPENDIX A. LIST OF ABBREVIATIONS 277

NLP
NLS
NIST
ODP
OMG
OOP
pP2pP
PARC

PDF
PPR
RDBMS
REP
RFC
RGB
RPC
RPM
RTF
SALSA
SAX
SBA
SCAM

SCC
SCSIS

SGML
SIAM
SIGIR
SIGMOD
SOAP
SPS
SQL
SRC
SRI
STC
TCP/IP

Natural Language Processing.

oN-Line System (Engelbart 1962; Engelbart and English 1968).

National Institute of Standards and Technology. Homepage: www.nist.gov
Open Directory Project. See DMOZ. Homepage: www.dmoz.org

Object Modelling Group. Homepage: www.omg.org

Object Oriented Programming.

Peer to Peer.

Palo Alto Research Center. Owned by Xerox and home to the WIMP user in-
terface standard and Ethernet networking. Homepage: www.parc.xerox.com

Portable Document Format. Homepage: www.adobe.com/products/acrobat/
Probabilistic Phrase Reranking (Radev, Fan, Qi, Wu, and Grewal 2002).
Relational DataBase Management System.

Robots Exclusion Policy. Homepage: www.robotstxt.org/wc/robots.html
Request for Comments. Homepage: www.ietf.org/rfc.html

Red Green Blue (Foley, van Dam, Feiner, and Hughes 1990).

Remote Procedure Calls.

Redhat Package Manager. Homepage: www.rpm.org

Rich Text Format.

Stochastic Approach for Link-Structure Analysis (Lempel and Moran 2000).
Simple APT for XML (Harold and Means 2001; Brownell 2002).

Small Business Administration. Homepage: www.sba.gov

Source Code Analysis and Manipulation (workshop). Homepage: www.brunel.ac.uk/ csst-
mmh2/scam2003

Strongly Connected Component. A set of the nodes in a graph where any
node is reachable from any other (Aho, Hopcroft, and Ullman 1983).

School of Computer Science and Information Systems (at Birkbeck). Home-
page: www.dcs.bbk.ac.uk

Standard Generalized Markup Language. Overview: www.w3.org/MarkUp/SGML
Society for Industrial and Applied Mathematics. Homepage: www.siam.org
Special Interest Group on Information Retrieval. Homepage: www.acm.org/sigir/
Special Interest Group on Management of Data. Homepage: www.acm.org/sigmod
Simple Object Access Protocol. Homepage: www.w3.org/TR/SOAP

SharePoint Server. Homepage: www.microsoft.com/sharepoint

Structured Query Language.

Systems Research Center. Homepage: research.compaq.com/SRC/home.html
Stanford Research Institute.

Suffix Tree Clustering.

Transfer Control Protocol/Internet Protocol (Stevens and Wright 2001).



APPENDIX A. LIST OF ABBREVIATIONS 278

TF Term Frequency (Baeza-Yates and Ribeiro-Neto 1999).

TF.IDF Term Frequency Inverse Document Frequency. The product of TF and IDF
(Baeza-Yates and Ribeiro-Neto 1999).

TKC Tightly Knit Community (Effect) (Lempel and Moran 2000).
TLD Top Level Domain. e.g. the .com in java.sun.com.
TREC Text REtrieval Conference. Homepage: trec.nist.gov
TSP Travelling Salesman Problem.
TV TeleVision.
UCL University College London. Homepage: www.ucl.ac.uk
UCS Universal Character Set.
UIUC University of Illinois at Urbana-Champaign. Homepage: www.uiuc.edu
UI User Interface.
ULU University of London Union
UR Universal Relation (Ullman 1989; Levene 1992).

URL Uniform Resource Locator. Describes the location of web pages (Berners-Lee
1994).

UTF UCS Translation Format(s).
VLC Very Large Collection. A TREC track replaced by the Web track.
VLDB Very Large DataBases. Homepage: www.vldb.informatik.hu-berlin.de
VRML Virtual Reality Modeling Language.
VSM Vector Space Model (Baeza-Yates and Ribeiro-Neto 1999).
W3C World Wide Web Consortium. Homepage: www.w3.org
WCC Weakly Connected Component (Aho, Hopcroft, and Ullman 1983).
WCRE Working Conference on Reverse Engineering. Homepage: www.cs.ualberta.ca/ wcre2003/
WIMP Windows Icons Menus Pointer.
WYSIWYG What You See Is What You Get.
XML eXtensible Markup Language (Harold and Means 2001). Homepage: www.w3c.org/XML
XSL eXtensible Stylesheet Language (Harold and Means 2001).
XSLT eXtensible Stylesheet Language Transformations (Harold and Means 2001).



Appendix B

List of Mathematical Symbols

g Power set.
r?2 Pearson’s product moment correlation coefficient.
p Spearman’s non-linear correlation measure.
M' The transpose of the matrix, M.
() The empty set.
{z} The set containing the value z.
{z|f(x)} The set containing all possible values for which f(x) is true.
|s| The number of elements in the set s.
U The union of two sets.
z € S True if the element z is in the set S.

A: B — C A function, A, taking an argument of type B and returning a value of type
C.

T, 1 True and false.
A Logical “and”.
— Logical negation.
3 Logical existence.
O(n) Time or space in the order of n.
>~ Summation.

+ Assignment.

279



Appendix C

Linear Correlation between
Ranking Metrics

280



ST
N R IR DA S IC R o

Qv N < R AN W) ) O o o O » o

AN S T C AR S O S U VAR VAN
PR 1.00 034 0.08 0.12 032 0.03 034 0.11 -093 0.00 0.01 -0.05 -0.03 0.01 -0.00 0.00
In 1.00 0.22 035 093 0.07 099 030 004 0.00 013 0.16 0.29 013 0.01 0.00
Out 1.00 0.71 0.23 026 022 049 0.00 0.00 031 039 023 031 0.02 0.00
Pg 1.00 041 0.77 036 066 0.00 0.01 073 08 060 0.74 0.04 0.01
Gr 1.00 023 093 0.54 0.03 0.00 0.27 030 0.52 027 0.02 0.00
Hub 1.00 0.08 056 -0.01 001 089 095 0.70 0.90 0.05 0.01
Auth 1.00 030 0.04 0.00 0.12 0.16 0.28 0.12 0.01 0.00
Foley 1.00 0.00 0.01 0.58 063 0.75 059 0.03 0.01
Log(PR) 1.00 0.00 0.03 0.11 0.13 0.03 0.00 0.00
Log(In) 1.00 0.01 0.01 0.02 0.01 0.24 1.00
Log(Out) 1.00 095 0.72 099 0.05 0.01
Log(Pg) 1.00 0.75 096 0.05 0.01
Log(Gr) 1.00 0.73  0.05 0.02
Log(Hub) 1.00  0.05 0.01
Log(Auth) 1.00 0.24
Log(Foley) 1.00

Figure C.1: Correlation between Web metrics on the Sleepycat webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVTHHHOO HVHNIT O XIANAHddV

18¢



2 Q) » N ¢
T A O R I TG

Q & RO b o o o o ) 9 S 9

SR A S N A S S AN VA G A A S SR
PR 1.00 008 00l 000 001 000 001 001 -099 000 -001 -0.10 -0.11 -0.01 000 0.00
In 1.00 0.09 021 051 020 047 033 000 002 019 026 059 019 002 0.01
Out 1.00 028 0.07 016 007 086 -0.00 -0.03 027 044 015 027 -0.03 0.00
Pg 1.00 042 095 044 040 -0.00 -0.01 0.6 0.50 039 0.16 -0.01 0.00
Gr 1.00 046 099 041 -0.00 0.00 005 021 052 005 000 0.00
Hub 1.00 047 033 -000 000 012 045 040 012 000 0.00
Auth 1.00 040 -0.00 0.00 0.04 020 048 0.04 0.00 0.00
Foley 1.00 -0.00 0.00 0.19 036 036 0.19 0.00 0.00
Log(PR) 100 000 002 011 015 002 000 0.00
Log(In) 1.00 -0.06 -0.05 006 -006 100 0.59
Log(Out) 1.00 083 042 1.00 -0.06 -0.01
Log(Pg) 1.00 056 0.83 -0.05 0.01
Log(Gr) 1.00 042 006 0.03
Log(Hub) 1.00 -0.06 -0.01
Log(Auth) 1.00 0.59
Log(Foley) 1.00

Figure C.2: Correlation between Web metrics on the SCSIS webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVITHHHOO HVHNIT O XIANAHddV

¢8¢



N N D

SIS AN O N R TN

Q & RO b o o o o ) 9 S 9

SR A S N A S S AN VA G A A S SR

PR 1.00 003 000 000 000 000 00l 000 -1.00 000 -000 -0.02 -002 -000 -0.00 0.00
In 1.00 0.05 003 020 001 055 016 000 000 004 006 021 004 001 0.00
Out 1.00 011 0.05 011 004 049 -0.00 -0.01 025 041 019 025 001 -0.00
Pg 1.00 097 005 001 011 -0.00 0.00 0.05 017 017 0.05 0.00 0.00
Gr 1.00 003 018 008 000 000 003 013 019 0.03 001 0.00
Hub 100 0.04 039 -000 001 019 048 048 020 002 0.00
Auth 1.00 009 0.00 0.0 0.01 0.2 009 0.01 0.00 0.00
Foley 1.00 000 0.00 014 033 033 0.14 002 0.00
Log(PR) 100 000 000 002 002 000 000 0.00
Log(In) 1.00 -0.10 -0.03 006 -004 028 0.66
Log(Out) 100 079 029 096 -0.05 -0.04
Log(Pg) 1.00 053 0.79 0.02 -0.00
Log(Gr) 1.00 031 011 0.04
Log(Hub) 1.00 0.03 0.00
Log(Auth) 1.00 0.19
Log(Foley) 1.00

Figure C.3: Correlation between Web metrics on the UCL webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVITHHHOO HVHNIT O XIANAHddV

€8¢



0\ 0O N D ) @ AN
N x s O @
SR A S N A S S AN VA G A A S SR
PR 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.1 -100 -0.00 -0.00 -0.03 -0.03 -0.00 -0.00 -0.00
In 1.00 010 0.05 023 001 056 040 000 0.00 006 011 021 006 001 0.00
Out 1.00 038 0.03 051 001 079 -000 0.00 019 036 021 019 0.02 0.00
Pg 1.00 078 031 0.01 034 000 000 005 015 011 006 0.01 0.00
Gr 1.00 0.01 0.22 016 000 0.00 0.01 005 0.09 0.02 000 0.00
Hub 1.00 0.01 042 -000 0.00 0.02 005 004 0.02 0.00 0.00
Auth 1.00 040 0.00 0.00 0.01 0.02 004 0.01 0.00 0.00
Foley 1.00 0.00 0.00 010 026 027 011 0.02 0.00
Log(PR) 1.00 0.00 0.01 0.03 0.04 0.01 0.00 0.00
Log(In) 1.00 -0.03 0.00 0.03 -0.010 014 081
Log(Out) 1.00 073 029 095 0.04 0.00
Log(Pg) 1.00 051 0.75 0.07 0.01
Log(Gr) 1.00 031 0.13 0.02
Log(Hub) 1.00 0.07 0.01
Log(Auth) 1.00 0.11
Log(Foley) 1.00

Figure C.4: Correlation between Web metrics on the UCL-CS webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVITHHHOO HVHNIT O XIANAHddV

¥8¢



@ 0\ A3 AN (\ N )
% R GV MV S S S s

¥ A 0 Q < £ » % WA % W W
PR 1.00 020 0.00 -0.00 0.14 -000 0.01 014 -098 0.00 0.00 -0.03 -0.01 0.00 -0.00 0.00
In 1.00 0.00 -0.00 0.72 -0.00 0.18 077 0.02 000 0.00 0.01 0.6 0.00 0.00 0.00
Out 1.00 093 0.01 0.12 -0.00 0.04 -0.00 0.01 0.01 093 0.04 0.06 0.01 0.01
Pg 1.00 -0.00 0.00 -0.00 0.02 -0.00 0.00 0.00 0.87 -0.01 0.02 0.01 0.00
Gr 1.00 -0.00 0.05 0.67 0.01 0.00 000 0.02 031 0.01 0.00 0.00
Hub 1.00 -0.00 0.01 -0.00 0.00 0.00 0.07 -0.02 0.01 0.00 0.00
Auth 1.00 0.01 0.00 0.00 0.00 -0.00 0.02 0.00 0.00 0.00
Foley 1.00 0.01 0.00 0.00 0.06 032 0.01 0.00 0.00
Log(PR) 1.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00
Log(In) 1.00 1.00 0.02 0.01 010 027 1.00
Log(Out) 1.00  0.02 001 010 027 1.00
Log(Pg) 1.00 0.11 0.15 0.02 0.02
Log(Gr) 1.00 0.04 0.01 0.01
Log(Hub) 1.00  0.04 0.10
Log(Auth) 1.00 0.27
Log(Foley) 1.00

Figure C.5: Correlation between Web metrics on the Intel webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVITHHHOO HVHNIT O XIANAHddV

G8¢



N Q DN ¢
PSR RO NN CANIR SR

Q & < O &Y o S N N N N\ S 8

AR O A B G » g N N S S O LR L S OOV
PR 1.00 0.07 000 000 000 000 000 00l -1.00 000 -000 -0.02 -002 -0.00 -0.00 0.00
In 1.00 001 001 015 -0.00 0.03 020 001 000 003 004 017 003 001 0.00
Out .00 0.11 001 004 -0.00 035 -0.00 -0.01 011 021 007 0.12 000 0.00
Pg 1.00 0.03 0.0 -0.00 0.06 -0.00 0.00 0.03 013 005 003 0.00 0.00
Gr 1.00 -0.00 0.00 0.38 0.0 0.00 001 001 009 001 000 0.00
Hub 1.00 -0.00 0.0l -0.00 0.0 0.00 001 000 000 000 0.00
Auth 1.00 0.00 -0.00 0.0 -0.00 -0.00 0.2 -0.00 0.00 0.00
Foley 1.00  0.00 0.00 0.09 0.19 017 0.10 001 0.00
Log(PR) .00 0.00 0.0 0.03 003 000 000 0.00
Log(In) 1.00 -0.11 -0.04 0.07 -0.07 0.40 0.68
Log(Out) 1.00  0.89 0.44 096 -0.08 -0.05
Log(Pg) 1.00 054 091 002 -0.00
Log(Gr) 1.00 047 0.10 0.05
Log(Hub) .00 0.02 -0.02
Log(Auth) 1.00 0.28
Log(Foley) 1.00

Figure C.6: Correlation between Web metrics on the Birkbeck webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVITHHHOO HVHNIT O XIANAHddV

98¢



N ) » N

ST RO S S

S & 9 < N N AN O ) O ) O ® O ®

RSSO D B AR M S S A R O

PR 1.00 0.12 0.01 0.00 0.08 -0.00 0.00 0.06 -0.99 0.00 -0.00 -0.06 -0.05 -0.00 -0.00 0.00
In 1.00 0.13 0.09 068 -0.00 008 049 001 001 009 012 035 0.10 0.01 0.00
Out 1.00 035 0.23 028 -0.00 0.49 -0.00 -0.06 0.58 0.74 042 0.58 0.00 -0.00
Pg 1.00 0.74 0.02 -0.00 0.34 -0.00 -0.00 0.21 0.51 053 0.21 0.01 0.00
Gr 1.00 -0.00 0.02 051 001 001 014 036 055 014 0.01 0.00
Hub 1.00 -0.00 0.06 -0.00 0.00 0.01 0.03 0.00 0.01 0.00 0.00
Auth 1.00 0.01 -0.00 0.00 -0.00 -0.00 0.04 -0.00 0.00 0.00
Foley 1.00 000 0.01 038 0.57 066 039 0.03 0.00
Log(PR) 1.00 000 0.01 0.07 0.08 0.01 0.00 0.00
Log(In) 1.00 -0.08 -0.07 0.04 -0.08 0.37 0.29
Log(Out) 1.00 086 0.41 099 -0.01 -0.01
Log(Pg) 1.00 0.64 0.87 0.01 -0.00
Log(Gr) 1.00 042 006 0.01
Log(Hub) 1.00  0.03 -0.00
Log(Auth) 1.00 0.11
Log(Foley) 1.00

Figure C.7: Correlation between Web metrics on the DTI webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVITHHHOO HVHNIT O XIANAHddV

18¢



N

RPN O N W
. o & \Q,NB %Q/@ %\0\& %8% %\Gﬁ %8» %\‘?v\* %\QO
MR S A S S S GU A SR AN G A

In 1.00 0.10 0.05 0.26 0.01 057 046 000 009 0.11 025 0.09 0.00 0.00

Out 1.00 042 0.04 053 0.01 077 000 024 034 021 024 0.01 0.00

Pg 1.00 0.76 0.32 0.01 036 0.00 0.11 0.18 0.13 0.11 0.00 0.00

Gr 1.00 0.01 023 020 0.00 0.03 0.06 0.12 0.03 0.00 0.00

Hub 1.00 0.01 0.36 0.00 0.03 0.07 0.04 0.03 0.00 0.00

Auth 1.00 045 0.00 0.01 0.02 0.05 0.01 0.00 0.00

Foley 1.00 0.00 0.24 0.34 0.37 024 0.01 0.00

Log(In) 1.00 0.00 0.00 0.00 0.00 0.07 1.00

Log(Out) 1.00 093 0.40 1.00 0.02 0.00

Log(Pg) 1.00 0.49 093 0.02 0.00

Log(Gr) 1.00 0.41 0.04 0.00

Log(Hub) 1.00 0.03 0.00

Log(Auth) 1.00 0.07

Log(Foley) 1.00

Figure C.8: Correlation between Web metrics on the JDK 1.4 webcase using Pearson’s product moment correlation coefficient

SOITHLAN ONIMNVYH NHAMLHE NOLLVITHHHOO HVHNIT O XIANAHddV

88¢



Appendix D

Non-Linear Correlation
between Ranking Metrics

289



APPENDIX D. NON-LINEAR CORRELATION BETWEEN RANKING METRICS 290

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.67 0.49 048 0.69 047 0.34 0.65
In 1.00 0.60 0.60 0.85 0.59 0.54 0.78
Out 1.00 095 0.59 092 021 0.65
Pg 1.00 0.59 0.96 0.22 0.66
Gr 1.00 0.59 0.53 0.89
Hub 1.00 0.21 0.64
Auth 1.00 045
Foley 1.00

Figure D.1: Correlation between Web metrics on the Sleepycat webcase using Kendall’s Tau
Statistics

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.84 0.65 0.64 0.87 0.63 047 0.84
In 1.00 0.65 0.65 0.94 0.65 0.68 0.89
Out 1.00 0.98 0.68 0.97 0.36 0.74
Pg 1.00 0.68 0.99 039 0.74
Gr 1.00 0.67 0.65 0.97
Hub 1.00 039 0.73
Auth 1.00  0.56
Foley 1.00

Figure D.2: Correlation between Web metrics on the Sleepycat webcase using Spearman’s
Rho



APPENDIX D. NON-LINEAR CORRELATION BETWEEN RANKING METRICS 291

PR In Out Pg Gr Hub Auth Foley
PR 1.00 036 0.26 0.26 0.52 0.24 -0.18 0.44
In 1.00 0.64 0.64 044 0.62 0.13 0.53
Out 1.00 098 0.22 096 0.10 0.46
Pg 1.00 0.23 0.96 0.10 0.47
Gr 1.00 0.21 -0.04 0.70
Hub 1.00 0.12 0.44
Auth 1.00 -0.01
Foley 1.00

Figure D.3: Correlation between Web metrics on the SCSIS webcase using Kendall’s Tau
Statistics

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.58 0.25 0.26 0.68 0.24 -0.29 0.68
In 1.00 0.51 0.51 0.63 0.50 -0.02 0.58
Out 1.00 1.00 0.21 0.99 0.00 0.40
Pg 1.00 0.22 0.99 0.00 0.40
Gr 1.00 0.21 -0.09 0.88
Hub 1.00 0.02 0.39
Auth 1.00 -0.11
Foley 1.00

Figure D.4: Correlation between Web metrics on the SCSIS webcase using Spearman’s Rho



APPENDIX D. NON-LINEAR CORRELATION BETWEEN RANKING METRICS 292

PR In Out Pg Gr Hub Auth Foley
PR 1.00 -0.41 -0.82 -0.82 -0.33 -0.82 -0.18 -0.32
In 1.00 046 0.46 0.71 046 046 0.62
Out 1.00 099 033 099 013 0.44
Pg 1.00 033 099 013 044
Gr 1.00 0.33 0.58 0.69
Hub 1.00 0.13 0.44
Auth 1.00 041
Foley 1.00

Figure D.5: Correlation between Web metrics on the JDK 1.4 webcase using Kendall’s Tau
Statistics

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.22 0.55 0.65 0.21 0.65 0.10 0.20
In 1.00 0.38 0.37 0.86 0.37 0.64 0.77
Out 1.00 0.87 0.26 0.87 0.06 0.43
Pg 1.00 0.28 0.99 0.06 0.44
Gr 1.00 0.28 0.76 0.85
Hub 1.00 0.06 0.44
Auth 1.00 0.58
Foley 1.00

Figure D.6: Correlation between Web metrics on the JDK 1.4 webcase using Spearman’s Rho



APPENDIX D. NON-LINEAR CORRELATION BETWEEN RANKING METRICS 293

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.36 0.17 0.18 0.33 0.17 -0.01 0.33
In 1.00 042 042 0.76 040 0.32 0.64
Out 1.00 093 0.25 0.84 0.27 0.39
Pg 1.00 0.25 0.89 0.23 040
Gr 1.00 0.23 040 0.88
Hub 1.00 0.30 0.38
Auth 1.00 0.36
Foley 1.00

Figure D.7: Correlation between Web metrics on the UCL webcase using Spearman’s Rho

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.32 0.18 0.18 0.25 0.17 -0.27 0.21
In 1.00 0.36 0.36 0.79 0.36 0.46 0.63
Out 1.00 1.00 0.27 0.98 0.18 0.34
Pg 1.00 0.27 0.98 0.19 0.34
Gr 1.00 0.28 0.58 0.89
Hub 1.00 0.21 0.34
Auth 1.00  0.55
Foley 1.00

Figure D.8: Correlation between Web metrics on the UCL-CS webcase using Spearman’s Rho



APPENDIX D. NON-LINEAR CORRELATION BETWEEN RANKING METRICS 294

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.61 0.03 0.03 043 0.09 042 0.06
In 1.00 0.09 0.09 0.79 0.03 0.70 0.24
Out 1.00 1.00 0.15 0.41 0.10 0.62
Pg 1.00 0.15 042 0.10 0.62
Gr 1.00 0.07 0.60  0.52
Hub 1.00 0.23 0.31
Auth 1.00 0.24
Foley 1.00

Figure D.9: Correlation between Web metrics on the Intel webcase using Spearman’s Rho

PR In Out Pg Gr Hub Auth Foley
PR 1.00 041 0.22 0.22 0.52 0.21 -0.25 0.67
In 1.00 0.74 0.75 035 0.74 0.25 0.49
Out 1.00 1.00 0.05 0.96 0.14 0.34
Pg 1.00 0.06 0.96 0.13 0.34
Gr 1.00 0.07 0.02 0.80
Hub 1.00 0.19 0.34
Auth 1.00 -0.02
Foley 1.00

Figure D.10: Correlation between Web metrics on the Birkbeck webcase using Spearman’s
Rho



APPENDIX D. NON-LINEAR CORRELATION BETWEEN RANKING METRICS 295

PR In Out Pg Gr Hub Auth Foley
PR 1.00 0.56 0.39 040 0.39 0.38 0.21 0.36
In 1.00 0.41 041 082 039 032 0.68
Out 1.00 1.00 0.39 098 0.25 0.52
Pg 1.00 0.40 0.98 0.24 0.52
Gr 1.00 0.36 0.22  0.89
Hub 1.00 0.28 0.50
Auth 1.00 0.18
Foley 1.00

Figure D.11: Correlation between Web metrics on the DTI webcase using Spearman’s Rho



Bibliography

Abiteboul, S., P. Buneman, and D. Suciu (2000). Data on the Web: From
Relations to Semistructured Data and XML. San Francisco, Ca.: Morgan-
Kaufmann.

Acksyn, R., D. McCracken, and E. Yoder (1988, July). Kms : A distributed hy-
permedia system for managing knowledge in organizations. Communications
of the ACM 31(7), 820-835.

Adamic, L. A. (2000). Zipf, power-laws, and pareto - a ranking tutorial. Techni-
cal report, Internet Ecologies Area, Xerox Palo Alto Research Center, 3333
Coyote Hill Rd., Palo Alto, CA 94304.

Adamic, L. A. (2002). Network Dynamics: The World Wide Web. Ph. D. thesis,
Stanford.

Agrawal, R. and R. Srikant (2002). Searching with numbers. In Proceedings of
International World Wide Web Conference, pp. 420-431.

Agrawal, S., S. Chaudhuri, and G. Das (2002). Dbxplorer: A system for
keyword-based search over relational databases. In Proceedings of IEEE In-
ternational Conference on Data Engineering, pp. 5—16.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman (1983, January). Data Structures
and Algorithms. Addison-Wesley Pub Co.

Albert, R., A.-L. Barabdsi, and H. Jeong (2000). Scale-free characteristics of
random networks: the topology of the world-wide web. Physica A 281, 69—
e

Albert, R., H. Jeong, and A.-L. Barabdsi (2000, July). Error and attack toler-
ance of complex networks. Nature 406, 378-382.

Alvestrand, H. (1995, March). Tags for the identification of languages. RFC#
1766.

Anderson, C. R. and E. Horvitz (2002). Web montage: A dynamic personalized
start page. In Proceedings of International World Wide Web Conference,
Honolulu, HI.

Anh, V. N. and A. Moffat (2002). Impact transformation: effective and efficient
web retrieval. In Proceedings of the 25th annual ACM/SIGIR conference on
Research and Development in Information Retrieval, Tampere, Finland, pp.
3 —10. ACM Press.

Apache Software Foundation (2003). Apache ant.

Ashish, N. and C. A. Knoblock (1997). Semi-automatic wrapper generation
for internet information sources. In Conference on Cooperative Information

296



BIBLIOGRAPHY 297

Systems, pp. 160-169.

Autonomy (2003). Autonomy technology white paper.

Baeza-Yates, R. and B. Ribeiro-Neto (1999). Modern Information Retrieval.
Reading, Ma.: ACM Press and Addison Wesley.

Baeza-Yates, R., B. Ribeiro-Neto, and G. Navarro (1999). Indexing and search-
ing. In R. Baeza-Yates and B. Ribeiro-Neto (Eds.), Modern Information
Retrieval, pp. 191-228. Reading, Ma.: ACM Press and Addison Wesley.

Bailey, P., N. Craswell, and D. Hawking (2001). Engineering a multi-purpose
test collection for web retrieval experiments. To appear.

Bailliez, S., N. K. Barozzi, J. Bergeron, S. Bodewig, P. Chanezon, J. D. David-
son, T. Dimock, P. Donald, D. Gillard, E. Hatcher, D. Holt, B. Kelly, A. J.
Kuiper, C. MacNeill, S. Mazzocchi, E. Meade, S. Ruby, N. Seessle, J. S.
Stevens, M. Umasankar, R. Vaughn, D. Walend, P. Wells, and C. Strong
(2002). Apache ant 1.5.1 manual.

Bar-Yossef, Z. and S. Rajagopalan (2002). Template detection via data min-
ing and its applications. In Proceedings of International World Wide Web
Conference, Honolulu, HI, pp. 580-591.

Bergman, M. K. (2000, July). The deep web: Surfacing hidden value. White
paper, Bright Planet.

Berners-Lee, T. (1989, March). Information management: A proposal. Techni-
cal report, CERN.

Berners-Lee, T. (1994). Uniform resource locators. Technical report, CERN.
RFC# 1738.

Berners-Lee, T. (1996). Rfc-1945 hypertext transfer protocol - http/1.0. RFC#
1738.

Berners-Lee, T. (1999). Weaving the Web: The original design and Ultimate
Destiny of the World Wide Web. London: Orion Books.

Bernstein, M. (1990, November). An apprentice that discovers hypertext links.
In A. Rizk, N. A. Streitz, and J. André (Eds.), Hypertext : Concepts, Sys-
tems and Applications : Proceedings of the First European Conference on
Hypertext, The Cambridge Series on Electronic Publishing. Cambridge Uni-
versity Press.

Bharat, K., A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubramanian
(1998). The connectivity server: fast access to linkage information on the
web. In Proceedings of 7Tth International World Wide Web Conference, pp.
14-18.

Bieman, J. and V. Murdock (2001, November). Finding code on the world wide
web: a preliminary investigation. In Proceedings of the First International
Workshop on Source Code Analysis and Manipulation (SCAM), Florence,
Ttaly.

Boldi, P. and S. Vigna (2003). The webgraph framework i: Compression tech-
niques. Technical Report 293-03, Dipartimento di Scienze dell’Informazione,
Universita di Milano.

Borges, J. (2000). A Data Mining Model to Capture User Web Navigation Pat-
terns. Ph. D. thesis, University College London.



BIBLIOGRAPHY 298

Botafogo, R., E. Rivlin, and B. Shneiderman (1992). Structural analysis of
hypertexts: Identifying hierarchies and useful metrics. ACM Transactions
on Information Systems 10, 142-180.

Briand, L., J. Daly, and J. Wust (1999). A unified framework for coupling
measurement in object-oriented systems. IEEE Transactions on Software
Engineering 25(1), 91-121.

Briand, L., P. Devanbu, and W. Melo (1997). An investigation into coupling
measures for C++. In Proceedings of the 19th International Conference on
Software Engineering (ICSE’97), Boston, USA, pp. 412-421.

Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual web
search engine. In Proceedings of International World Wide Web Conference,
Brisbane, pp. 107-117.

Broder, A. (1997). On the resemblance and containment of documents. In Pro-
ceedings of Compression and Complezity of Sequences (SEQUENCES’97),
pp- 21-29.

Broder, A., S. Glassman, and M. Manasse (1997). Clustering the web. Technical
report, Compaq SRC.

Broder, A., R. Kumar, F. Maghoul, P. Raghavan, A. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener (2000, May). Graph structure in the web. In
Proceedings of the 9th World Wide Web Conference, Amsterdam, pp. 309—
320.

Broder, A. Z. (2000). Identifying and filtering near-duplicate documents. In Pro-
ceedings of the 11th Annual Symposium on Combinatorial Pattern Matching,
pp- 1-10.

Brownell, D. (2002, January). SAX2. 101 Morris Street, Sebastapol, CA 95472:
O’Reilly & Associates Inc.

Burke, C. B. (1994, June). Information and Secrecy : Vannevar Bush, Ultra,
and the Other Memez. Scarecrow Press.

Bush, V. (1945). As we may think. Atlantic Monthly 76, 101-108.

Cailliau, R. (1995). A little history of the world wide web.

Carroll, L. (1865). Alice’s Adventures in Wonderland. Candlewick Press. Guten-
berg Etext #929.

Cavnar, W. B. and J. M. Trenkle (1994). N-gram-based text categorization. In
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval.

Chakrabarti, S., S. Srivastava, M. Subramanyam, and M. Tiwari (2000). Using
memex to archive and mine community web browing experience. In Proceed-
ings of International World Wide Web Conference, pp. 669-684.

Chen, M., M. Hearst, J. Hong, and J. Lin (1999). Cha-cha: A system for organiz-
ing intranet search results. In USENIX Symposium on Internet Technologies
and Systems.

Chidamber, S. R. and C. F. Kemerer (1991). Towards a metrics suite for object-
oriented design. In OOPSLA 91, Phoenix, Arizona, pp. 197-211.

Chidlovskii, B., U. Borghoff, and P. Chevalier (1997). Towards sophisticated
wrapping of web-based information repositories.



BIBLIOGRAPHY 299

Chittaro, L., R. Ranon, and L. Leronutti (2003). Guiding visitors of web3d
worlds through automatically generated tours. In Web3D proceedings.

Cho, J., H. Garcia-Molina, and L. Page (1998). Efficient crawling through URL
ordering. In Proceedings of International World Wide Web Conference, Bris-
bane, pp. 161-172.

Cleverdon, C. (1997). The cranfield tests on index language devices. In
K. Sparck Jones and P. Willett (Eds.), Readings in Information Retrieval,
pp- 47-59. San Francisco, Ca.: Morgan-Kaufmann.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM 13(6), 377-387.

Coleridge, S. T. (1816). Kubla khan.

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computer 20,
17-41.

Cooper, A. (1999). The Inmates are Running the Asylum. Sams.

Craswell, N. and D. Hawking (2002). Overview of the trec-2002 web track. In
E. M. Voorhees and L. P. Buckland (Eds.), NIST Special Publication: SP
500-251, The Eleventh Text Retrieval Conference (TREC 2002). Gaithers-
burg, Maryland: Department of Commerce, National Institute of Standards
and Technology.

Crestani, F., M. Lalmas, C. J. V. Rijsbergen, and I. Campbell (1998, Decem-

ber). “is this document relevant? ...probably”: a survey of probabilistic
models in information retrieval. ACM Computing Surveys (CSUR) 30, 528
552.

Cutler, M., H. Deng, S. Maniccam, and W. Meng (1999). A new study on using
html structures to improve retrieval. In The Eleventh IEEE International
Conference on Tools with Artificial Intelligence, pp. 406—4009.

Cutler, M., Y. Shih, and W. Meng (1997). Using the structure of html docu-
ments to improve retrieval. In Useniz Symposium on Internet Technologies
and Systems (USITS 97).

Damashek, M. (1995). Gauging similarity via n-grams: Language-independent
sorting, categorization and retrieval of text. Science 267, 843-848.

Davison, B. D. (2000, July). Recognizing nepotistic links on the web. In Proceed-
ings of the AAAI-2000 Workshop on Artificial Intelligence for Web Search,
Austin, TX, pp. 23-28. AAAT Press.

Dorigo, M., V. Maniezzo, and A. Colorni (1996). The ant system: Optimization
by a colony of cooperating agents. IEEFE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetics 26(1), 29-41.

Dougherty, D. and A. Robbins (1997, March). Sed & Awk (2nd ed.). 101 Morris
Street, Sebastapol, CA 95472: O’Reilly & Associates Inc.

Drexler, K. E. (1987). Hypertext publishing and the evolution of knowledge.
Social Intelligence 1(2), 87-120. Last updated in September 1996.

Drineas, P., A. Frieze, R. Kannan, S. Vempala, and V. Vinay (1999, January).
Clustering in large graphs and matrices. In Proceedings of the Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms, Baltimore, Maryland, pp.
291-299.



BIBLIOGRAPHY

Drori, O. (2000). Using text elements by context to display search results. In
Information Doors (a workshop proceedings held in conjunction with the
ACM Hypertext 2000 and ACM Digital Libraries 2000 conferences), San
Antonio, Texas, USA., pp. 17-22.

Edmunson, H. (1969). New methods in automatic indexing. In I. Mani and
M. T. Maybury (Eds.), Advances in Automatic Text Summarization, pp.
23-42. Cambridge, MA 02142: MIT Press.

Eisenberg, A. and J. Melton (2002). Sql/xml is making good progress. SIGMOD
Record 31(2), 101-108.

Engelbart, D. C. (1962). Augmenting human intellect : A conceptual frame-
work. Technical report, Stanford Research Institute, Menlo Park, California
94025, USA.

Engelbart, D. C. and W. K. English (1968, December). A research center for
augmenting human intellect. In Proceedings of the 1968 Fall Joint Computer
Conference, San Francisco, CA, pp. 395-410.

Everitt, B. (1998). The Cambridge Dictionary of Statistics. The Edinburgh
Building, Cambridge CB2 2RU, UK: Cambridge University Press.

Fagan, J. L. (1987). Automatic phrase indexing for document retrieval. In C. Yu
and C. van Rijsbergen (Eds.), Proceedings of the 10th Annual ACM/SIGIR
Conference on Research and Development in Information Retrieval, pp. 91—
101.

Fagin, R., A. R. Karlin, J. Kleinberg, P. Raghavan, S. Rajogopalan, R. Rubin-
field, M. Sudan, and A. Tomkins (2000). Random walks with back buttons.
In Proceedings of the 32nd ACM Symposium on Theory of Computing.

Fagin, R., R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin,
and D. P. Williamson (2003). Searching the workplace web. In Proceedings
of the World Wide Web Conference, Budapest, Hungary.

Fairhead, H. (1990, December). Screen hypes. Computer Shopper, 135-141.

Flake, G., C. L. Giles, and S. Lawrence (2000). Efficient identification of
web communities. In Proceedings of the Sizth International Conference on
Knowledge Discovery and Data Mining.

Flake, G. W., S. Lawrence, C. L. Giles, and F. M. Coetzee (2002, March).
Self organization of the web and identification of communities. IEEE Com-
puter 35(3), 66-71.

Flanagan, D. (1997). Java in a Nutshell (2nd ed.). 101 Morris Street, Se-
bastapol, CA 95472: O’Reilly & Associates Inc.

Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes (1990). Com-
puter Graphics, Principles and Practice (2nd ed.). Reading, Mass., U.S.A.:
Addison-Wesley.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts (1999, June). Refac-
toring: Improving the Design of Existing Code (1st ed.). Addison-Wesley
Pub Co.

Fowler, M., D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford (2002,
November). Patterns of Enterprise Application Architecture (1st ed.). Ad-
dison Wesley Professional.

300



BIBLIOGRAPHY 301

Freed, N. and N. Borenstein (1996, November). Multipurpose internet mail
extensions (mime) part two: Media types. RFC# 2046.

Friedl, J. E. F. (2002, July). Mastering Regular Ezpressions (2nd ed.). 101
Morris Street, Sebastapol, CA 95472: O’Reilly & Associates Inc.

Friendly, L. (1995, June). The design of distributed hyperlinked programming
documentation. In Proceedings of The International Workshop on Hyperme-
dia Design in Montpellier, France. Sun Microsystems, Inc.

Frost, R. (1875). The road not taken.

Furuta, R., F. M. Shipman III, C. C. Marshall, D. Brenner, and H. Hsieh
(1997, April). Hypertext paths and the world-wide web: Experiences with
walden’s paths. In Proceedings of the Eighth ACM Conference on Hypertext,
Southampton, U.K., pp. 167-176.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. One Jacob Way, Reading,
Massachusetts 01867: Addison Wesley Longman, Inc.

Gansner, E. R., E. Koutsofios, S. C. North, and K.-P. Vo (1993). A technique
for drawing directed graphs. IEEE Trans. Software Engineering 19 19(3),
214-230.

Geisler, G. (2000). Enriched links: A framework for improving web navigation
using pop-up views. Technical report, Interaction Design Laboratory, School
of Information and Library Science, University of North Carolina, U.S.A.

Goldman, R., N. Shivajumar, S. Venkatasubramanian, and H. Garcia-Molina
(1998). Proximity search in databases. In Proceedings of the 24th Intl. Conf.
on Very Large Databases (VLDB), New York, U.S.A.

Goldman, R. and J. Widom (2000). Wsq/dsq: A practical approach for com-
bined querying of database and the web. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp. 285-296.

Google (2002a). Google toolbar.

Google (2002b). Terms of service.

Gordon, M. and P. Pathak (1999, March). Finding information on the world
wide web: The retrieval effectivness of search engines. Information Process-
ing and Management 2(35), 141-180.

Gori, M., M. Maggini, and E. Martinelli (1999). Nautilus - navigate au-
tonomously and target interesting links for users. Technical report, Diparti-
mento di Ingegneria dell’Informazione, Universit di Siena. Technical Report
RT-DII-20/99.

Greenspun, P. (1994). We have chosen shame and will get war. Submitted to
2nd International World Wide Web Conference (Rejected).

Grossman, D. A. and O. Frieder (1998). Information Retrieval: Algorithms and
Heuristics. Boston: Kluwer Academic Publishers.

Guillaume, J.-L., M. Latapy, and L. Viennot (2002). Efficient and simple en-
codings for the web graph. In Poster Proceedings of the International World
Wide Web Conference.

Guinan, C. and A. F. Smeaton (1992). Information retrieval from hypertext us-
ing dynamically planned guided tours. In Proceedings of the ACM European



BIBLIOGRAPHY 302

Conference on Hypertet.

Gurry, M. and P. Corrigan (1996). Oracle Performance Tuning. 101 Morris
Street, Sebastapol, CA 95472: O’Reilly & Associates Inc.

Halasz, F. G. (1988). Notecards: A multimedia idea processing environment. In
S. Ambron and K. Hoope (Eds.), Interactive Multimedia. Microsoft Press.

Hamilton, J. R. and T. K. Nayak (2001, December). Microsoft sql server full-
text search. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering’s Special Issue on Text and Databases 24 (4), 7-10.

Hammond, N. and L. Allinson (1988, June). Travels around a learning support
environment: Rambling, orienteering or touring. In Chi’88 Conference Pro-
ceedings: Human Factors in Computing Systems, pp. 269-273. Association
for Computing Machinery.

Hammond, N. and L. Allinson (1989a, September). Extending hypertext for
learning: An investigation of access and guidance tools. In Proceedings of
the BCS HCI conference, Nottingham, pp. 293-304. Cambridge University
Press.

Hammond, N. and L. Allinson (1989b). Extending hypertext for learning: An
investigation of access and guidance tools. In V. Sutcliffe and L. Macaulay
(Eds.), People and Computers. Cambridge: Cambridge University Press.

Harman, D., E. Fox, R. Baeza-Yates, and W. Lee (1992). Inverted files.
In R. Baeza-Yates and W. Frakes (Eds.), Information Retrieval: Data
Strucutres & Algorithms, pp. 28—43. Upper Saddle River, NJ: Prentice Hall.

Harold, E. R. and W. S. Means (2001). XML in a Nutshell. 101 Morris Street,
Sebastapol, CA 95472: O’Reilly & Associates Inc.

Harrison, R., S. J. Counsell, and R. Nithi (1998). Coupling metrics for OO
design. In IEEFE International Symposium on Software Metrics, Bethesda,
Maryland, US, pp. 150-157.

Haveliwala, T. H. (1999). Efficient computation of pagerank. Technical report,
Stanford University.

Haveliwala, T. H. (2002). Topic-sensitive pagerank. In Proceedings of Interna-
tional World Wide Web Conference, Hawaii.

Hawking, D., N. Craswell, P. Bailey, and K. Griffiths (2001). Measuring search
engine quality. Information Retrieval 4 (1), 33-59.

Hearst, M. (1995, May). Tilebars: Visualization of term distribution informa-
tion in full text information access. In Proceedings of the Conference on
Human Factors in Computing Systems, Denver, Colorado, USA.

Hearst, M., J. Pedersen, and D. Karger (1995, November). Scatter/gather as a
tool for the analysis of retrieval results. In Working Notes of the AAAI Fall
Symposium on Al Applications in Knowledge Navigation, Cambridge, MA,
U.S.A.

Hearst, M. and P. Pedersen (1996). Reexamining the cluster hypothesis: Scat-
ter/gather on retrieval results. In Proceedings of 19th Annual ACM/SIGIR
Conference on Research and Development in Information Retrieval, Zurich.

Hearst, M. A. (1997, March). Scientific american - interfaces for searching the
web. Scientific American, 68-72.



BIBLIOGRAPHY 303

Hearst, M. A. and C. Karadi (1997, July). Cat-a-cone : An interactive interface
for specifying searches and viewing retrieval results using a large category
hierarchy. In Proceedings of 20th Annual ACM/SIGIR Conference on Re-
search and Development in Information Retrieval, Philadelphia, PA, U.S.A.

Heather, M. A. and B. N. Rossiter (1990). Database support for very large
hypertexts: Data organization, navigation and trails. Electronic Publishing
- 0ODD 3 : 3, 141-154.

Henzinger, M., A. Heydon, M. Mitzenmacher, and M. Najork (1999). Measuring
index quality using random walks on the web. In Proceedings of International
World Wide Web Conference, Montreal, pp. 1291-1303.

Herbert, F. (1965). Dune. Ace Books.

Heydon, A. and M. Najork (1999a). Mercator: A scalable, extensible web
crawler. World Wide Web 2, 219-229.

Heydon, A. and M. Najork (1999b). Performance limitations of the java core
libraries. In Proceedings of the ACM Java Grande Conference, pp. 35-41.
Hirai, J., S. Raghavan, A. Paepcke, and H. Garcia-Molina (2000, May). Webbase
: A repository of web pages. In Proceedings of the 9th International World

Wide Web Conference, Amsterdam, pp. 277-293.

Hopcroft, J. and J. Ullman (1979). Introduction to Automata Theory, Languages
and Computation. Reading, Ma.: Addison-Wesley.

Howe, D. (1993). The free on-line dictionary of computing.

Hristidis, V. and Y. Papakonstantinou (2002). Discover: Keyword search in
relational databases. In Proceedings of the 28th VLDB Conference, Hong
Kong.

Huberman, B., P. Pirolli, J. Pitkow, and R. Lukose (1998). Strong regularities
in world wide web surfing. Science 280, 95-97.

Hulgeri, A., G. Bhaltoia, C. Nakhe, S. Chakrabarti, and S. Sudarshan (2001).
Keyword search in databases. Bulletin of the Technical Committee on Data
Engineering. Special Issue on Imprecise Queries 24 No. 3, 22-32.

Jakobsson, M. (2002, June). Fractal hash sequence representation and traversal.
In Proceedings of IEEE International Symposium on Information Theory,
Palais de Beaulieu, Lausanne, Switzerland.

Jansen, B. J., A. Spink, and T. Saracevic (1998). Failure analysis in query
construction: Data and analysis from a large sample of web queries. In
Digital Libraries 98, Pittsburgh, PA, USA.

Jeh, G. and J. Widom (2001). Simrank: A measure of structural-context simi-
larity. Technical report, Stanford InfoLab.

Joachims, T., D. Freitag, and T. Mitchell (1997). WebWatcher: A tour guide
for the World Wide Web. In Proceedings of International Joint Conference
on Artificial Intelligence, Nagoya, Japan, pp. 770-775.

Joachims, T., T. Mitchell, and D. Freitag (1995). Webwatcher: A learning ap-
prentice for the world wide web. In AA Al Spring Symposium on Information
Gathering.

Johnson, R. and B. Foote (1988). Designing reusable classes. Journal of Object-
Oriented Programming 1(2), 22-35.



BIBLIOGRAPHY 304

Johnson, R. and W. Opdyke (1993a). Refactoring and aggregation. In Object
Technologies for Advanced Software, Number 742 in Lecture Notes in Com-
puter Science, pp. 264-278. Springer Verlag.

Johnson, R. E. and W. F. Opdyke (1993b). Creating abstract superclasses
by refactoring. In Proceedings of the ACM Computer Science Conference,
CSC"93.

Jones, K. S., S. Walker, and S. E. Robertson (2000). A probabilistic model of
information retrieval: development and comparative experiments - part 2.
Information Processing and Management 36(6), 809-840.

Junod, D. N. (1992). Amigaguide : A hypertext documentation system.

Kahn, P. and K. Lenk (2001). Mapping Web Sites. Rue du Bugnon 7, CH-1299
Crans-Pres-Celigny, Switzerland: Rotovision SA.

Kamvar, S. D., T. H. Haveliwala, and G. H. Golub (2003, April). Adaptive
methods for the computation of pagerank. Technical report, Stanford Uni-
versity.

Kamvar, S. D., T. H. Haveliwala, C. D. Manning, and G. H. Golub (2003a,
March). Exploiting the block structure of the web for computing pagerank.
Technical report, Stanford University.

Kamvar, S. D., T. H. Haveliwala, C. D. Manning, and G. H. Golub (2003b). Ex-
trapolation methods for accelerating pagerank computations. In Proceedings
of the World Wide Web Conference, Budapest.

Kawai, H., S. Akamine, K. Kida, K. Matsuda, and T. Fukushima (2002). De-
velopment and evaluation of the withair mobile search engine. In Poster
Proceedings of International World Wide Web Conference, Honolulu, HI.
Internet Systems Research Laboratories, NEC Corp.

Kim, S. and B.-T. Zhang (2000, August). Web-document retrieval by genetic
learning of importance factors for html tags. In A.-H. Tan and P. S. Yu
(Eds.), PRICAT 2000 Workshop on Text and Web Mining, Melbourne, pp.
13-23.

Kleinberg, J., D. Gibson, and P. Raghavan (1998). Inferring web communities
from link topology. In UK Conference on Hypertext, pp. 225-234.

Kleinberg, J. M. (1998). Authoritative sources in a hyperlinked environment. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms, San Fran-
cisco, pp. 668-677.

Koch, G. and K. Loney (2002). Oracle 9i : The Complete Reference. Osborne
McGraw-Hill.

Koster, M. (1994, June). Robot exclusion.

Kushmerick, N. (1997). Wrapper Induction for Information Extraction. Ph. D.
thesis, University of Washington.

Kwok, C., O. Etzioni, and D. S. Weld (2001, May). Scaling question answer-
ing to the web. In Proceedings of the 10th International World Wide Web
Conference, Hong Kong.

L’Amour, L. (1984, June). Ride the Dark Trail (Reissue ed.). Bantam Books.

Lamping, J., R. Roa, and P. Pirolli (1995). A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies. In CHI ’95, ACM,



BIBLIOGRAPHY 305

New York (1995) 401408.

Larry Wall, Tom Christiansen, J. O. (2000, July). Programming Perl (3rd ed.).
101 Morris Street, Sebastapol, CA 95472: O’Reilly & Associates Inc.

Lawrence, S., K. Bollacker, and C. L. Giles (1999, November). Indexing and
retrieval of scientific literature. In Eighth International Conference on In-
formation and Knowledge Management, CIKM 99, Kansas City, Missouri,

pp. 139-146.
Lawrence, S. and C. L. Giles (1998). Searching the world wide web. Science 280,
98-100.

Lawrence, S. and C. L. Giles (1999). Accessibility of information on the web.
Nature 400, 107-109.

Leighton, V. and J. Srivastava (1999). First 20 precision among world wide
web search services. Journal of the American Society for Information Sci-
ence 10(50), 870-881.

Lempel, R. and S. Moran (2000). The stochastic approach for link-structure
analysis (SALSA) and the TKC effect. In Proceedings of the 9th Interna-
tional World Wide Web Conference, pp. 387-402.

Levene, M. (1992). The Nested Universal Relation Model, Volume 595 of Lecture
Notes in Computer Science. Berlin: Springer-Verlag.

Levene, M., J. Borges, and G. Loizou (2001). Zipf’s law for web surfers. Knowl-
edge and Information Systems 3, 120-129.

Levene, M., T. I. Fenner, G. Loizou, and R. Wheeldon (2002). A stochastic
model for the evolution of the web. Computer Networks and ISDN Sys-
tems 39, 277-287.

Levene, M. and G. Loizou (1999). Navigation in hypertext is easy only some-
times. SIAM Journal on Computing 29, 728-760.

Levene, M. and G. Loizou (2002). Kemeny’s constant and the random surfer.
American Mathematical Monthly 109, T41-745.

Levene, M. and R. Wheeldon (2001). A Web site navigation engine. In Poster
Proceedings of International World Wide Web Conference, Hong Kong.
Levene, M. and R. Wheeldon (2003). Navigating the world-wide-web. In M. Lev-

ene and A. Poulovassilis (Eds.), Web Dynamics. Springer-Verlag.

Levene, M. and N. Zin (2001, June). A navigation engine for assessing the
quality of a trail between linked pages.

Ley, M. (2002). Digital library and bibliography project.

Li, W.-S., K. S. Candan, Q. Vu, and D. Agrawal (2001). Retrieving and or-
ganizing web pages by ”information unit”. In Proceedings of International
World Wide Web Conference, Hong Kong, pp. 230-244.

Lim, L., M. Wang, S. Padmanabhan, J. S. Vitter, and R. Agarwal (2003).
Dynamic maintenance of web indexes using landmarks. In Proceedings of
the World Wide Web Conference, Budapest, Hungary.

Luhn, H. (1958). The automatic creation of literature abstracts. In I. Mani and

M. T. Maybury (Eds.), Advances in Automatic Text Summarization, pp.
15-21. Cambridge, MA 02142: MIT Press.



BIBLIOGRAPHY 306

Mase, H. (1998). Experiments on automatic web page categorization for ir sys-
tem. Technical report, Stanford University.

Masier, A. and D. Simmen (2001, December). Db2 optimization in support of
full text search. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering’s Special Issue on Text and Databases 24 (4), 3-6.

Mat-Hassan, M. and M. Levene (2001). Can navigational assistance improve
search experience: A user study. First Monday 6(9).

Mauldin, M. (1997). Lycos: Design choices in an internet search service. IEEE
Ezpert Online 1(12).

Mayfield, J. and P. McNamee (1997). N-gram vs. words as indexing terms. In
TREC-6 Conference Notebook Papers.

Mayfield, J. and P. McNamee (1999). Indexing using both n-grams and words.
In The Seventh Text REtrieval Conference (TREC-7). NIST Special Publi-
cation 500-242, pp. 419-423, 1999.

Mayfield, J. and P. McNamee (2003, July). Single n-gram stemming. In Pro-
ceedings of the 26th Annual ACM/SIGIR Conference on Research and De-
velopment in Information Retrieval, Toronto, Ontario, pp. 415-416.

Meyrowitz, N. K. (1986). Intermedia: The architecture and construction of
an object-oriented hypermedia system and application framework. In Pro-
ceedings of the ACM Conference on Object Oriented Programming Systems
Languages and Applications, pp. 186-201. ACM Press.

Microsoft Corporation (2001, May). Introducing microsoft sharepoint portal
server 2001.

Miller, E., D. Shen, J. Liu, and C. Nicholas (2000, July). Performance and scal-
ability of a large-scale n-gram based information retrieval system. Journal
of Digital Information 1.

Mizuuchi, Y. and K. Tajima (1999). Finding context paths for web pages. In
Proceedings of the ACM Hypertext Conference.

Mladenic, D. (1998, October). Machine Learning on non-homogeneous, dis-
tributed text data. Ph. D. thesis, University of Ljubljana, Slovenia.

Mladenic, D. (1999, July). Machine learning used by personal webwatcher.
In Proceedings of ACAI-99 Workshop on Machine Learning and Intelligent
Agents, Chania, Crete.

Moreau, L. and W. Hall (1998). On the expressiveness of links in hypertext
systems. The Computer Journal 41(7), 459-473.

Muchowski, J. and A. Smith (1994). Indy Workstation Owner’s Guide. Silicon
Graphics, Inc.

Mukherjea, S. and J. Foley (1995). Showing the context of nodes in the world-
wide web. In Proceedings of ACM Conference on Human Factors in Com-
puting Systems, Denver, Colorado.

Mukherjea, S. and Y. Hara (1997). Focus + context views of world-wide web
nodes. In Proceedings of UK Conference on Hypertext, pp. 187-196.

Myers, A. C. (1990). Gdiff man page.

Najjar, R., S. Counsell, G. Loizou, and K. Mannock (2003, March). The role
of constructors in the context of refactoring object-oriented systems. In



BIBLIOGRAPHY 307

Proceedings of the 7th European Conference on Software Maintenance and
Reengineering, Benevento, Italy, pp. 111-120.

Najork, M. and A. Heydon (2001). High performance web crawling. In J. Abello,
P. M. Pardalos, and M. G. Resende (Eds.), Handbook of Massive Data Sets.
Kluwer Academic Publishers, Inc.

Najork, M. and J. L. Wiener (2001). Breadth-first search crawling yields high
quality pages. In Proceedings of the International World- Wide-Web Confer-
ence, pp- 114-118.

Nelson, T. H. (1965). A file structure for the complex, the changing and the in-
determinate. In Proceedings of the 1965 20th national conference, Cleveland,
Ohio, United States, pp. 84-100.

Nelson, T. H. (1993). Literary Machines (93.1 ed.). Mindful Press.

Nelson, T. H. (1995). Lemonade.

Nelson, T. H. (1999, December). Xanalogical structure, needed now more than
ever : Parallel documents, deep links to content, deep versioning and deep
re-use. ACM Computing Surveys (CSUR) 31.

Nielsen, J. (1989, November). The matters that really matter for hypertext
usability. In Hypertext 89 Proceedings.

Nielsen, J. (1997). Search and you may find. useit.com alertbox.

Nielsen, J. (2000). Designing Web Usability: The Practice of Simplicity. Indi-
anapolis, Indiana: New Riders Publishing.

Nielsen, J. (2001, May). Search: Visible and simple. Useit.com Alertbox.

Nielsen, J. (2002, January). Site map usability. useit.com Alertbox.

Nyce, J. and P. Kahn (1991). From Memex to Hypertext: Vannevar Bush and
the Mind’s Machine. San Diego, Ca.: Academic Press.

O’Donoghue, D., A. Leddy, J. Power, and J. Waldron (2002, June). Bi-gram
analysis of java bytecode sequences. In Principles and Practice of Program-
ming in Java, Trinity College Dublin.

Opdyke, W. (1992). Refactoring object-oriented frameworks. Ph. D. thesis, Uni-
versity of Illinois, Urbana-Champaign, IL, USA.

Oram, A. and S. Talbott (1993). Managing Project with Make. O’Reilly.

Over, P. and J. Yen (2003, May). An introduction to duc 2003: Intrinsic eval-
uation of generic news text summarization systems. In Proceedings of DUC
2003: Workshop on Text Summarization, Edmonton, Canada.

Page, L. (1998, January). Method for node ranking in a linked database.

Page, L., S. Brin, R. Motwani, and T. Winograd (1998). The pagerank cita-
tion ranking: Bringing order to the web. Working paper, Department of
Computer Science, Stanford University.

Pandurangan, G., P. Raghavan, and E. Upfal (2002). Using pagerank to char-
acterize web structure. In Proceedings of the 8th Annual International Com-
puting and Combinatorics Conference (COCOON).

Pinkerton, B. (1994). Finding what people want: Experiences with the we-
berawler. In Proceedings of the Second International World Wide Web Con-
ference, Chicago.



BIBLIOGRAPHY 308

Pinkerton, B. (2002). WebCrawler: Finding What People Want. Ph. D. thesis,
University of Washington.

Pollock, A. and A. Hockley (1997, March). What’s wrong with internet search-
ing. In Designing for the Web : Empirical Studies, Microsoft Corporate
Headquarters, Redmond, Washington. Human Factors Unit, BT Laborato-
ries, Ipswich, UK.

Porter, M. F. (1980). An algorithm for suffix stripping. Program 14(3), 130-137.

Potanin, A. (2002). The fox - a tool for object graph analysis. Technical report,
Victoria University of Wellington. BSc. Honours report.

Potanin, A., J. Noble, M. R. Frean, and R. Biddle (2003). Scale-free geometry
in object-oriented programs. Submitted to CACM.

Pratt, W., M. Hearst, and L. M. Fagan (1999, July). A knowledge-based ap-
proach to organizing retrieved documents. In Proceedings of the Sizteenth
National Conference on Artificial Intelligence, Orlando, Florida, U.S.A.

Pretschner, A. and S. Gauch (1999, December). Personalization on the web.
Technical report, Information and Telecommunication Technology Center
(ITTC), The University of Kansas, Lawrence, KS.

Radev, D., W. Fan, H. Qi, H. Wu, and A. Grewal (2002). Probabilistic question
answering on the web. In Proceedings of the International World Wide Web
Conference.

Raghavan, S. and H. Garcia-Molina (2001, September). Crawling the hidden
web. In Proceedings of the 27th Intl. Conf. on Very Large Databases (VLDB),
pp- 129-138.

Raghhavan, P. (2001, December). Structured and unstructured search in en-
terprises. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering’s Special Issue on Text and Databases 24(4), 15-18.

Randall, K. H., R. Stata, R. Wickremesinghe, and J. L. Wiener (2002, April).
The link database: Fast access to graphs of the web. In Proceedings of the
Data Compression Conference, Snao Bird, Utah.

Raymond, E. S. (1998, March). The cathedral and the bazaar. First Mon-
day 3(3).

Raymond, E. S. (2001, January). The Cathedral and the Bazaar: Musings on
Linuz and Open Source by an Accidental Revolutionary (Revised ed.). 101
Morris Street, Sebastapol, CA 95472: O’Reilly & Associates.

R.Durbin and D. Willshaw (1987, April). An analogue approach to the travelling
salesman problem using an elastic net method. Nature 326(16), 689.

Reiser, H. (2001). The naming system venture. White Paper.

Richardson, M. and P. Domingos (2002). The intelligent surfer: Probabilistic
combination of link and content information in pagerank. Advances in Neural
Information Processing Systems (14). To Appear.

Risvik, K. M. and R. Michelsen (2002, June). Search engines and web dynamics.
Computer Networks 39(3), 289-302.

Robertson, S. E. and S. Walker (1999). Okapi/keenbow at trec-8. In Proceedings
of the Eighth Text REtrieval Conference, pp. 1561-162.



BIBLIOGRAPHY 309

Sagiv, Y. (1983). A characterization of globally consistent databases and their
access paths. ACM Transactions on Database Systems 8, 266—286.

Salton, G. and C. Buckley (1998). Term weighting approaches in automatic text
retrieval. Information Processing and Management 24, 513-523.

Sarda, N. L. and A. Jain (2001). Mragyati: A system for keyword-based search-
ing in databases. Computing Research Repository cs.DB/0110052.
Shakespeare, W. (1599). As you like it.

Shaw, S. (1998). A generic robot architecture. Technical report, University Col-
lege London. ¢316 BSc Project Report.

Shiozawa, H., H. Nishiyama, and Y. Matsushita (2001). The natto view: An ar-
chitecture for interactive information visualization. IPSJ JOURNAL 38(11).

Shirazi, J. (2000). Java Performance Tuning. O'Reilly.

Shivakumar, N. and H. Garcia-Molina (1999). Finding near-replicas of docu-
ments on the web. In WEBDB: International Workshop on the World Wide
Web and Databases, WebDB. LNCS.

Sillitoe, T., B. N. Rossiter, and M. A. Heather (1990). Trail management in
hypertext: Database support for navigation through textual complex ob-
jects. In A. Brown and P. Hitchcock (Eds.), Proceedings of the 8th British
National Conference on Databases, pp. 224-242.

Silverstein, C., M. Henzinger, H. Marais, and M. Moricz (1999). Analysis of a
very large altavista query log. SIGIR Forum 33(1), 6-12.

Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data
Engineering Bulletin 4(24), 35-43.

Singhal, A., C. Buckley, and M. Mitra (1996). Pivoted document length normal-
ization. In Research and Development in Information Retrieval, pp. 21-29.

Skene, J. (2001). How to implement a component. Technical report, Navigation
Zone, Ltd.

Sleepycat Software (2001). Berkeley DB. New Riders Publishing.

Smith, M. K., D. McGuinness, R. Volz, and C. Welty (2002, November). Web
ontology language (owl) guide. Technical report, W3C.

Spertus, E. and L. A. Stein (2000). Squeal : A structure query language for the
web. In Proceedings of the 9th International World Wide Web Conference,
pp- 95-103.

Spink, A., J. Bateman, and B. J. Jansen (1998). Searching heterogeneous col-
lections on the web: behaviour of excite users. Information Research: An
Electronic Journal 2(5).

Spink, A., B. J. Jansen, D. Wolfram, and T. Saracevic (2002, March). From
e-sex to e-commerce: Web search changes. IEEE Computer 3(35).

Stevens, R. and G. R. Wright (2001, November). TCP/IP Illustrated. Addison
Wesley Professional.

Stevenson, R. L. (1850-1894). Virginibus puerisque and other papers : El do-
rado. Project Gutenberg Ftext #386.

Stotts, P. and R. Furata (1989). Petri-net based hypertext: Structure with
browsing semantics. ACM Transactions on Information Systems 7, 3—29.



BIBLIOGRAPHY 310

Stotts, P. D., R. Furuta, and J. C. Ruiz (1992). Hyperdocuments as automata:
Trace-based browsing property verification. In Proceedings of European Con-
ference on Hypertext, pp. 272-281.

Sullivan, D. (2001, December). Search engine sizes. Technical report.

Sun  Microsystems  Inc.  (2001). Javadoc  tool  home  page.
http://java.sun.com/j2se/javadoc/.

Swinehart, D., P. T. ZellWeger, R. Beach, and R. Hagmann (1986, October). A
structural view of the Cedar programming environment. A CM Transactions
on Programming Languages and Systems 8(4), 419-490.

Thompson, T. and N. Baran (1988, November). The next computer. Byte.

Tokuda, L. and D. Batory (2001). Evolving object-oriented designs with refac-
torings. Automated Software Engineering 8, 89-120.

Tolkien, J. (1954). The Lord of the Rings. HarperCollins.

Tomasi, M. D. and B. Mehlenbacher (1999). Re-engineering online documenta-
tion: Designing examples-based online support systems. Technical Commu-
nication, 46 1(46), 55—66.

Tombros, A. (1997). Reflecting user information needs through query biased
summaries. Master’s thesis, Department of Computing Science, University
of Glasgow.

Tombros, A. and M. Sanderson (1998, August). The advantages of query-biased
summaries in information retrieval. In Proceedings of the 21st Annual ACM

SIGIR Conference on Research and Development in Information Retrieval,
Melbourne, Australia, pp. 2-10. ACM Press.

Trigg, R. H. (1988, October). Guided tours and tabletops : Tools for communi-
cating in a hypertext environment. ACM Transactions of Office Information
Systems 6(4), 398-414.

Trigg, R. H. and M. Weiser (1986, January). Textnet: A network-based ap-
proach to text handling. ACM Transactions on Office Information Sys-
tems 4(1), 1-23.

Ullman, J. (1989). Principles of Database and Knowledge-Base Systems, Vol-
ume 2. Rockville, Md.: Computer Science Press.

Valverde, S., R. Ferrer-Cancho, and R. V. Sole (2002, April). Scale-free net-
works from optimal design. Condensed Matter Archive cond-mat/0204344.
Submitted to Europhysics Letters.

Van Rijsbergen, C. J. (1979). Information Retrieval, 2nd edition. Dept. of Com-
puter Science, University of Glasgow.

Voorhees, E. M. (1999, December). Natural language processing and infor-
mation retrieval. In J. G. Carbonell, J. Siekmann, and M. T. Pazienza
(Eds.), Information Extraction: Towards Scalable, Adaptable Systems (Lec-
ture Notes in Artificial Intelligence), pp. 32-48. Springer Verlag.

Wachowski, A. and L. Wachowski (1999).

Walker, J. H. (1987, November). Document examiner: Delivery interface for

hypertext documents. In Hypertext’87 Proceedings, Chapel Hill, North Car-
olina, USA, pp. 307-323. ACM.



BIBLIOGRAPHY

Weinreich, H. and W. Lamersdorf (2000). Concepts for improved visualization
of web link attributes. In Proceedings of International the 9th World Wide
Web Conference, pp. 403-418.

Wexelbat, A. and P. Maes (1999). Footprints: History-rich tools for information
foraging. In Proceedings of CHI’99, Pittsburgh, PA, U.S.A.

Wheeldon, R. (1999). Report on the hparobot. Technical report, University
College London. ¢316 BSc Project Report.

Wheeldon, R. and S. Counsell (2003a, June). Making refactoring decisions in
large-scale java systems: an empirical stance. Computing Research Reposi-
tory ¢s.SE/0306098.

Wheeldon, R. and S. Counsell (2003b, September). Power law distributions in
class relationships. In Proceedings of 8rd International Workshop on Source
Code Analysis and Manipulation (SCAM), Amsterdam, pp. 45-54. IEEE
Computer Society.

Wheeldon, R., S. Counsell, and K. Keenoy (2003, September). Autocode: Using
memex-like trails to improve program comprehension. In A. van Deursen,
C. Knight, J. I. Maletic, and M.-A. Storey (Eds.), Proceedings of 2nd Annual
Designfest on Visualizing Software for Understanding and Analysis (VIS-
SOFT), Amsterdam, pp. 48-49.

Wheeldon, R. and M. Levene (2003, November). The best trail algorithm
for adaptive navigation in the world-wide-web. In Proceedings of 1st Latin
American Web Congress, Santiago, Chile.

Wheeldon, R., M. Levene, and K. Keenoy (2003, July). Search and navigation
in relational databases. Computing Research Repository cs.DB/0307073.
Wheeldon, R., M. Levene, and N. Zin (2002). Autodoc: A search and naviga-
tion tool for web-based program documentation. In Poster Proceedings of

International World Wide Web Conference, Honolulu, HI.

Wolf, G. (1995, June). The curse of xanadu. Wired.

Wolfram, D., A. Spink, B. J. Jansen, and T. Saracevic (2001, October). Vox
populi: The public searching of the web. Journal of the American Society
for Information Science and Technology 12(52), 1073-1074.

Wolpert, D. H. and W. G. Macready (1995). No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa Fe, NM.

Wolpert, D. H. and W. G. Macready (1997, April). No free lunch theorems
for optimization. IEEE Transactions on Ewvolutionary Computation 1(1),
67-82.

Wong, W. Y. P. and D. L. Lee (1993). Implementations of partial document
ranking using inverted files. Information Processing and Management 29(5),
647-669.

Wood, L. (1998). Spacesearch.

Yahoo! (2001). The history of yahoo! - how it all started...

Yang, C. C. and F. L. Wang (2003). Fractal summarization for mobile devices
to access large documents on the web. In Proceedings of the World Wide
Web Conference, Budapest, Hungary.

311



BIBLIOGRAPHY 312

Zachary, G. P. (1999). Endless Frontier: Vannevar Bush, Engineer of the Amer-
ican Century. Cambridge, Massachusetts: MIT Press.

Zamir, O. and O. Etzioni (1999). Grouper: a dynamic clustering interface to
Web search results. Computer Networks and ISDN Systems 81, 1361-1374.

Zawinski, J. (2000). Java sucks.

Zellweger, P. T. (1989, November). Scripted documents: A hypermedia path
mechanism. In Hypertext 89 Proceedings, 3333 Coyote Hill Rd., Palo Alto,
CA. 94304.

Zheng, 7. (2002). Developing a web-based question answering system. In Pro-
ceedings of the International World Wide Web Conference, Honolulu, HI.

Zin, N. and M. Levene (1999). Constructing web views from automated naviga-
tion sessions. In ACM Digital Library Workshop on Organizing Web Space
1999 (WOWS), pp. 54-58.



Index

n-grams, 36, 161 HES, 26
HITS, 44, 46, 100, 106

ActiveWebcase, 120, 121 HTML, 29
Aggregation, 241 Weighting scemes for, 43
Algorithm HTTP, 29

Best Trail, 75 Hubs and Authorities, 44

Page Filter, 133

Text Summarization, 136 Information Retrieval, 36
AllTheWeb, 137 Inheritance, 241
Ant colony, 73, 96, 124 Intel, 90, 107
Ask Jeeves, 137 Interface, 241
Augmentation Research Centre, 25 Intermedia, 26
Authorities, 44 IREngine, 120

Automata, 65
Java2HTML, 248

Bag-of-Words, 36 Javadoc, 90, 109, 239, 242, 244, 248, 262
BANKS, 224, 232 JDK, 90, 107, 108

Berners-Lee, Tim, 18, 29 Join Discovery Problem, 216

Birkbeck, 90, 107, 108

Bow-Tie Model, 30 Kleinberg, 44

Bush 18, 23 i
ush, Vannevar, 18, Lost in Hyperspace, 50

CiteSeer, 224 Lycos, 137

Conklin, 27, 30

Coupling, 240, 252

Crawling, 34, 116, 205, 217
Incremental, 146

Memex, 18, 23

Mercator, 116, 205
Metasearch, 33

Microsoft Office, 133, 215

DBLP, 212, 219, 221, 224 o
DbSurfer, 216, 235 Navigation Problem, 18, 50

Document Examiner, 26 NavSearch, 116, 150, 172, 244, 248

DTI, 90, 107 Nelson, Ted, 23, 239
Nodes, Landmark, 44
Engelbart, Douglas, 25, 62, 239 NoteCards, 26
Enquire, 29
PageRank, 34, 45, 100, 106
Gain Rank, 106 efficient computation of, 45
Google, 45, 137, 268 topic-specific, 45
Tool bar, 150 PageRanks, 112
GraphViz, 71, 154 Parameter type, 241
Guided Tour, 27, 50, 62 PDF, 133, 215

313



INDEX 314

Pinkerton, 33, 34, 46, 108 Vertical Trailer, 213, 226, 235
Postscript, 133, 215
Potential Gain, 98, 100, 102, 104, 106, 259 WebCrawler, 33, 46
Query Specific, 112 Weighted Sum, 80, 81, 83, 86, 90
Site based, 112 WT10g, 104
Power law, 31, 32, 104, 252 WT10g, TREC, 40
Precision, 39
Preferential Attachment, 32 Xanadu, 23
Curse of, 23
Rank Sinks, 45 .
. ’ Zip, 134
Rapid Selector, 23 720G, 26

Recall, 39

Refactoring, 241, 259
Relevance, 37

Resource Discovery, 33
Resource Discovery Problem, 18
Return type, 241

SALSA, 46

SCC, 30

SCSIS, 90, 107, 108

Search Engines, 33
Security, 235

SharePoint, 213, 226
Shockwave Flash, 133, 215
Similarity, 37

Site Maps, 51

Sleepycat, 90, 107, 108
Strongly Connected Component, 30
Sum Distinct, 80, 81, 83, 90

Tar, 134
Teoma, 137
tf.idf, 37
Title
HTML tag, 43
Short, 143, 161
TKC Effect, 46
TrailAlgorithm, 120, 121
TrailNode, 120
Transclusion, 23
Transcopyright, 23
TREC, 40, 90, 104, 107, 108

UCL, 90, 107, 108
Udanax, 23

Vector Space Model, 37



