AutoCode: Using Memex-like Trails to Improve Program Comprehension

Richard Wheeldon, Steve Counsell and Kevin Keenoy
Department of Computer Science
Birkbeck College, University of London
London WCI1E 7HX, U.K.
{richard,steve,kevin} @dcs.bbk.ac.uk

Abstract

This paper presents AutoCode - a system for identifying
“trails” of classes in Java programs. These trails are com-
puted with regard to five coupling relationships (Aggrega-
tion, Inheritance, Interface, Parameter and Return Type)
and are presented in a Web-based interface.

1 Introduction

In his seminal paper “As We May Think” [1], Vannevar
Bush suggested a future machine called a “memex”. In do-
ing so, he introduced the world to the concept of linked
documents and of the trail - a sequence of linked pages.
The concept of trails is well established in the hypertext
community and many systems have been built which sup-
port their construction [3].

Previous work has described a navigation engine for auto-
matically constructing trails as a means of assisting users
browsing Web sites [5]. This navigation engine was further
used to provide search and navigation facilities for Javadoc
program documentation. If JavaDoc-style program doc-
umention, derived from source code, can be indexed, it
seems logical that the source code itself should be indexed
also.

We have developed a new tool called AutoCode based upon
the navigation engine design. AutoCode provides full-text
indexing of Java source code and uses a probabilistic best-
first algorithm to identify trails in graphs of coupling-type
relationships.

2 Trails on Java Code

Classes and objects in OO systems do not work in isola-
tion. They are connected to each other by various depen-
dencies. The Java language connects classes together via
five coupling relationships - Aggregation, Inheritance, In-
terface, Parameter and Return Type [4]. Each of these cou-
pling relations can be used to construct a graph of depen-
dencies. An illustration of how these graphs can be derived
from Java source code can be seen in Figure 1. AutoCode
constructs trails on each of these five graphs and presents
them in a Web-based interface.

The NavSearch user interface used to present the trails
(Figure 2) has three main elements. At the top is a naviga-
tion tool bar comprising a trail of classes considered most
relevant (the “best trail”). On the left is a navigation tree
window showing all the trails. Whenever the mouse pointer
moves over these trails, a small pop-up appears which
shows metadata and an extract. The rest of the display is
dedicated to showing the source code of the selected class.
The original Web-site search interface on which it was
based was proven to be highly effective at allowing users
to complete information seeking tasks [2]. It is hoped the
same will apply to the AutoCode interface, a demonstra-
tion of which is available at http://nzone.dcs.bbk.ac.uk/.

Each trail is colour-coded according to the type of cou-
pling involved. This coupling type is also shown in the
pop-up for each class. Green trails denote parameter type
references, cyan trails denote return-type references, gold
trails show interface extensions, purple trails shows chains
of aggregation links and orange trails show inheritance re-
lationships from subclass to superclass.

Figure 2 shows how the trails are presented for the re-
sults to the query “zip” on the JDK 1.4 source code.
Figure 3 shows the trails more clearly. It can be easily
seen from the first trail that there is a member variable

interface StringReader {
String readString();
}

abstract class CharSequence {
int getLength();
append(String addme);
}

class StringFileReader
implements StringReader {
String lastString;
StringFileReader(String filename) { }
String readString() { }
}

class String extends CharSequence{
append(String addme);
}

StringReader
StringFileReader

Interface

CharSequence

Inheritance

StringFileReader

Aggregation

Return Type

CharSequence StringFileReader

Parameter Type

Figure 1. lllustration of coupling types and their graph representations.

of type ZipFile in the class ZipFileInputStream.
The second and third trails start with the common root,
ZipFile. These show that one or more methods in
the ZipFile class must take ZipEntry as a parame-
ter and that ZipFile has a subclass called JarFile.
The fourth trail shows that ZipFile implements the in-
terface ZipConstants. The fifth shows that ZipOut -
putStream has a member variable of type ZipEn-—
try. The sixth and seventh trails show that both Zip-
InputStream and JarFile have methods which take
ZipEntrys as parameters. The eighth trail shows that
JarInputStreamhas atleast one method which returns
a ZipEntry and the ninth shows that ZipEntry is the
superclass of JarEntry which is, in turn, the superclass
for JarFile.JarFileEntry.

! itjgwa.util. zip ZipFile.ZipFileInputStream
Java.util, zip ZipFie
=4 java.utl. zip ZipFile
(=i java.utll, zip . ZipEntry

& java.util jar JarFile

& java.utl, zip ZipConstants

& java.util, zip ZipFie

4 java.util zip ZipOutputStream
=i java.utll, zip .ZipEntry
~H java.utll. zip ZiplnputStream
=i java.utl, zip ZipEntry
W java,utiljar JarFile
 java,utl, zip ZipEntry

& java.utiljar JainputStrearm
8 java.util, zip .ZipEntry

Figure 3. Trails returned for the query “zip”
on the JDK 1.4 source code.

3 Automating Trail Discovery

Given the graphs of related classes, the navigation engine
can be used to construct trails. This works in 4 stages.
The first stage is to calculate scores (using ¢ f.idf) for each
of the classes matching one or more of the keywords in
the query, and to isolate a small number of these for fu-

ture expansion, by combining these scores with a metric
called potential gain [5, 4]. The second stage is to con-
struct the trails using the Best Trail algorithm [5]. The al-
gorithm builds trails using a probabilistic best-first traver-
sal. The third stage involves filtering the trails to remove
redundant information. In the fourth and final stage, the
navigation engine computes small summaries of each class
and formats the results for display in a web browser. Jason
Shattu’s Java2HTML! is used to present the source code,
since it provides effective syntax highlighting, has a public
API and makes links to both Javadocs and between classes
in source code.

3.1 Architecture

AutoCode indexes the Java code using a custom doclet.
Figure 4 shows how this works with the other elements of
the navigation engine. The doclet uses the class structure
to construct the five coupling graphs. It also communicates
with an external parser, which manipulates the HTML rep-
resentation of the source code to create an inverted file.
This inverted file is used by the query engine to compute
relevance scores for each class or page. The trail engine
uses these scores and the coupling graphs to compute the
trails. The NavSearch interface presents the trails as shown
in Figure 2.

4 Future Work

Object Oriented languages gain particular benefit from the
mapping between classes and Web pages. It is intended
that AutoCode be extended to support both C++ and C#. It
is also hoped that the system can be extended to allow per-
sonalized results so that programmers working on a partic-
ular field have query results tailored to their needs.

Certain compromises have been made in the development
of AutoCode, which should also be addressed in any future
development. AutoCode neither shows the relationships
between inner and outer classes nor discriminates between
static and object references.

Other graphs can be constructed through static and run-
time analysis. These include in-memory object references
graphs and call-graphs. Any such graphs could be adapted
for use with AutoCode.

AutoCode has been developed as a standalone tool oper-
ating within JavaDoc. As such it can be updated by any
tool which can control JavaDoc, notably build tools such

! http://java2html.com/

A java.uti. zip . ZipFile
A java.uti, Zip ZipEntry

|8 java.uti. zip ZpOutputStream
A java.uti, zip ZipEntry
A java.util, zip . ZipihputStrean
-0 java,util, zip ZpEntry
2 java.uti jar JarFile
A java.util, zip ZpEntry

1 java.ut jar JarTnputStream

@ NavigationZone,..

Trail>java.util. zip ZipFile.ZipFileInputStream > java.utl. zip ZipFle

avigation Zone @ 2000-2002

AutoCodeSearch

zip Search

*4

@(#)zipFile.java 1.56 02/05/2%

]

Copyright 2002 Zun Microsystems, Inc. All rights reserved.
SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terme.

package Java.util.zip;

import java.io.InputStream;
import java.ic.IOException;
import java.ic.EOFException;
import java.ic.File;

import java.util.vector;
import java.util.Enumeraticn;

import

Java.util.NeSuchElementException;

import java.security.AccesscContreller:;

JEE

* This class is used to read entries from a zip file.
*

*
*
*y

pub

1.56, 05/23/02
David Connelly

@version
@author

lic

class ZipFile implements ZipConstants |

private long jzfile; // address of jzfile data
private gtring name; // zip fils name

private int total; // total number of entries

private static final int STORED = ZipEntry.STORED;
private static final int DEFLATED = ZipEntry.DEFLATED;

JEE

=7

< I»l_l <

* Mode flag teo open a zip file for reading.

public static final int OPEN READ = 0Oxzl;

Figure 2. Results for the query “zip” on the JDK 1.4 source code.

as Apache Ant. However, it would be beneficial to embed
the interface within a Java IDE so that identified classes
can be immediately edited.

Combining these elements would provide developers with
a much more flexible tool for identifying relevant classes
and the relationships between them.

5 Conclusions

This paper has presented AutoCode - a Web-based tool for
computing and presenting memex-like trails across cou-
pling graphs. It benefits from a simple, web-based inter-
face with a strong, well-explored metaphor for displaying
class relationships. It works well with very large programs
and libraries. For example, the JDK libraries which contain
over 6 000 classes and over 1 400 000 lines of code. Au-
toCode also benefits from platform and IDE independence
and uses indexes which can easily be updated during the
build process.

However, AutoCode is not without problems. It is re-
stricted to a single language - Java, and ignores certain
important relationships between classes. However, it is re-
stricted by a lack of editing features, meaning that identi-

fied classes cannot be manipulated without a separate edi-
tor.

References

[1] Vannevar Bush. As we may think. Atlantic Monthly,
76:101-108, 1945.

[2] Mazlita Mat-Hassan and Mark Levene. Can naviga-
tional assistance improve search experience: A user
study. First Monday, 6(9), 2001.

[3] Siegfried Reich, Leslie Carr, David De Roure, and
Wendy Hall. Where have you been from here? : Trails
in hypertext systems. ACM Computing Surveys, 31(4),
December 1999.

[4] Richard Wheeldon and Steve Counsell. = Making
refactoring decisions in large-scale java systems: an
empirical stance. Computing Research Repository,
¢s.SE/0306098, June 2003.

[5] Richard Wheeldon and Mark Levene. The best trail
algorithm for adaptive navigation in the world-wide-
web. In Proceedings of Ist Latin American Web
Congress, Santiago, Chile, November 2003.

JavaDoc Tool

o P HTML Page
Web Site(s) [:
«“*‘ | —URLs
/

P ture
/Class Struc!

2
()
%

/

Source Code

Index

N
/) ol 2 QO@ _\leltr
/) £ \ A Builder

Parameter

/

U

Inheritsnce Interface Aggregation Return Type

————tt.idf

User
Inverted File

: : k__HTML Page
Q)
»
. $Q>°
(\ /
suIJ:
og,

Trail
Engine

Figure 4. Architecture of AutoCode. Boxes represent external data sources, open-ended boxes
represent internal data stores, circles represent processes, solid arrows represent data flow and
dotted arrows represent flows of important information (URLs and Queries). Simple keyed “get”

instructions (for example in HTTP requests) are omitted for clarity.

